Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 507(7490): 81-5, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598636

RESUMO

Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to all-optical, ultralow-noise detection of classical electronic signals sets the stage for coherent up-conversion of low-frequency quantum signals to the optical domain.

2.
Phys Rev Lett ; 121(3): 031101, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085801

RESUMO

Quantum backaction (QBA) of a measurement limits the precision of observation of the motion of a free mass. This profound effect, dubbed the "Heisenberg microscope" in the early days of quantum mechanics, leads to the standard quantum limit (SQL) stemming from the balance between the measurement sensitivity and the QBA. We consider the measurement of motion of a free mass performed in a quantum reference frame with an effective negative mass which is not limited by QBA. As a result, the disturbance on the motion of a free mass can be measured beyond the SQL. QBA-limited detection of motion for a free mass is extremely challenging, but there are devices where this effect is expected to play an essential role, namely, gravitational wave detectors (GWDs) such as LIGO and Virgo. Recent reports on the observations of gravitational waves have opened new horizons in cosmology and astrophysics. We present a general idea and a detailed numerical analysis for QBA-evading measurement of the gravitational wave effect on the GWD mirrors, which can be considered free masses under relevant conditions. The measurement is performed by two entangled beams of light, probing the GWD and an auxiliary atomic spin ensemble, respectively. The latter plays the role of a free negative mass. We show that under realistic conditions the sensitivity of the GWD in m/sqrt[Hz] can be increased by 6 dB over the entire frequency band of interest.

3.
Phys Rev Lett ; 117(13): 133604, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715084

RESUMO

We present the first experimental realization of coherent Bragg scattering off a one-dimensional system-two strings of atoms strongly coupled to a single photonic mode-realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

4.
Phys Rev Lett ; 113(26): 263603, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615331

RESUMO

We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance -14 dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8 atoms on an ensemble of some 10(3) atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum nondemolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice.

5.
Phys Rev Lett ; 108(6): 065302, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401082

RESUMO

We propose a method to probe time-dependent correlations of nontrivial observables in many-body ultracold lattice gases. The scheme uses a quantum nondemolition matter-light interface, first to map the observable of interest on the many-body system into the light and then to store coherently such information into an external system acting as a quantum memory. Correlations of the observable at two (or more) instances of time are retrieved with a single final measurement that includes the readout of the quantum memory. Such a method brings to reach the study of dynamics of many-body systems in and out of equilibrium by means of quantum memories in the field of quantum simulators.

6.
Phys Rev Lett ; 108(9): 090401, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463618

RESUMO

We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data and point at a new experimental route to study strongly coupled light matter systems.

7.
Proc Natl Acad Sci U S A ; 106(27): 10960-5, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541646

RESUMO

Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for greater, similar 10(5) cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement.

8.
Phys Rev Lett ; 106(1): 010403, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231723

RESUMO

We establish a method of directly measuring and estimating nonclassicality--operationally defined in terms of the distinguishability of a given state from one with a positive Wigner function. It allows us to certify nonclassicality, based on possibly much fewer measurement settings than necessary for obtaining complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that even from measuring two conjugate variables alone, one may infer the nonclassicality of quantum mechanical modes. This method also provides a practical tool to eventually certify such features in mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner's theorem characterizing classical and quantum characteristic functions and on semidefinite programming. In this joint theoretical-experimental work we present data from experimental optical Fock state preparation.

9.
Phys Rev Lett ; 107(27): 273601, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22243310

RESUMO

We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an "optical loud speaker" are outlined.

10.
Opt Express ; 18(6): 5825-30, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389599

RESUMO

We present an experimental investigation of alkali atom vapor cells coated with a high quality anti-relaxation coating material based on alkenes. The prepared cells with single compound alkene based coating showed the longest spin relaxation times which have been measured up to now with room temperature vapor cells. Suggestions are made that chemical binding of a cesium atom and an alkene molecule by attack to the C = C bond plays a crucial role in such improvement of anti-relaxation coating quality.


Assuntos
Álcalis/química , Alcenos/química , Luz , Teste de Materiais , Refratometria
11.
Phys Rev Lett ; 105(16): 160501, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230955

RESUMO

We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements.

12.
Phys Rev Lett ; 104(13): 133601, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481884

RESUMO

We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First, we apply an optimal sequence of state preparation, evolution, and the backaction evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5x10(12) atoms which allows us to achieve subfemtotesla/square root(Hz) sensitivity.

13.
Opt Express ; 17(16): 14444-57, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654852

RESUMO

We analyse a novel squeezing and entangling mechanism which is due to correlated Stokes and anti-Stokes photon forward scattering in a multi-level atom vapour. We develop a full quantum model for an alkali atomic vapour including quantized collective atomic states which predicts high degree of squeezing for attainable experimental conditions. Following the proposal we present an experimental demonstration of 3.5 dB pulsed frequency nondegenerate squeezed (quadrature entangled) state of light using room temperature caesium vapour. The source is very robust and requires only a few milliwatts of laser power. The squeezed state is generated in the same spatial mode as the local oscillator and in a single temporal mode. The two entangled modes are separated by twice the Zeeman frequency of the vapour which can be widely tuned. The narrow-band squeezed light generated near an atomic resonance can be directly used for atom-based quantum information protocols. Its single temporal mode characteristics make it a promising resource for quantum information processing.


Assuntos
Álcalis/química , Gases/química , Modelos Químicos , Simulação por Computador , Luz , Espalhamento de Radiação
14.
Opt Lett ; 34(24): 3872-4, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016642

RESUMO

We demonstrate a method for time gating the standard heralded cw spontaneous parametric downconverted single-photon source by using pulsed pumping of an optical parametric oscillator below threshold. The narrow bandwidth, high purity, high spectral brightness, and pseudodeterministic character make the source highly suitable for light-atom interfaces with atomic memories.

15.
Sci Rep ; 9(1): 18173, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796770

RESUMO

Magnetic resonance (MR) imaging relies on conventional electronics that is increasingly challenged by the push for stronger magnetic fields and higher channel count. These problems can be avoided by utilizing optical technologies. As a replacement for the standard low-noise preamplifier, we have implemented a new transduction principle that upconverts an MR signal to the optical domain and imaged a phantom in a clinical 3 T scanner with signal-to-noise comparable to classical induction detection.

16.
Opt Express ; 15(13): 7940-9, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19547121

RESUMO

Using cavity-enhanced non-degenerate parametric down-conversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.

17.
Nat Nanotechnol ; 12(8): 776-783, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28604707

RESUMO

The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications that range from protein mass spectrometry and magnetic resonance force microscopy to quantum optomechanics. A notorious challenge in these experiments is the thermomechanical noise related to the dissipation through internal or external loss channels. Here we introduce a novel approach to define the nanomechanical modes, which simultaneously provides a strong spatial confinement, full isolation from the substrate and dilution of the resonator material's intrinsic dissipation by five orders of magnitude. It is based on a phononic bandgap structure that localizes the mode but does not impose the boundary conditions of a rigid clamp. The reduced curvature in the highly tensioned silicon nitride resonator enables a mechanical Q > 108 at 1 MHz to yield the highest mechanical Qf products (>1014 Hz) yet reported at room temperature.The corresponding coherence times approach those of optically trapped dielectric particles. Extrapolation to 4.2 K predicts quanta per milliseconds heating rates, similar to those of trapped ions.

18.
Nat Commun ; 7: 11356, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27076381

RESUMO

Quantum interfaces between photons and atomic ensembles have emerged as powerful tools for quantum technologies. Efficient storage and retrieval of single photons requires long-lived collective atomic states, which is typically achieved with immobilized atoms. Thermal atomic vapours, which present a simple and scalable resource, have only been used for continuous variable processing or for discrete variable processing on short timescales where atomic motion is negligible. Here we develop a theory based on motional averaging to enable room temperature discrete variable quantum memories and coherent single-photon sources. We demonstrate the feasibility of this approach to scalable quantum memories with a proof-of-principle experiment with room temperature atoms contained in microcells with spin-protecting coating, placed inside an optical cavity. The experimental conditions correspond to a few photons per pulse and a long coherence time of the forward scattered photons is demonstrated, which is the essential feature of the motional averaging.

20.
Phys Rev Lett ; 102(2): 020501, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257254

RESUMO

We suggest interfacing nanomechanical systems via an optical quantum bus to atomic ensembles, for which means of high precision state preparation, manipulation, and measurement are available. This allows, in particular, for a quantum nondemolition Bell measurement, projecting the coupled system, atomic-ensemble-nanomechanical resonator, into an entangled EPR state. The entanglement is observable even for nanoresonators initially well above their ground states and can be utilized for teleportation of states from an atomic ensemble to the mechanical system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA