Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7946): 125-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653448

RESUMO

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Assuntos
Bactérias , Transmissão de Doença Infecciosa , Microbioma Gastrointestinal , Ambiente Domiciliar , Microbiota , Boca , Feminino , Humanos , Lactente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Mães , Boca/microbiologia , Transmissão Vertical de Doenças Infecciosas , Características da Família , Envelhecimento , Fatores de Tempo , Viabilidade Microbiana
2.
J Transl Med ; 22(1): 151, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351008

RESUMO

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS: Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS: Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS: PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.


Assuntos
Variações do Número de Cópias de DNA , Neuroblastoma , Lactente , Humanos , Animais , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Modelos Animais de Doenças , Citometria de Fluxo
3.
Pharmacol Res ; 188: 106639, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586642

RESUMO

Neuroblastoma is a biologically heterogeneous extracranial tumor, derived from the sympathetic nervous system, that affects most often the pediatric population. Therapeutic strategies relying on aggressive chemotherapy, surgery, radiotherapy, and immunotherapy have a negative outcome in advanced or recurrent disease. Here, spherical polymeric nanomedicines (SPN) are engineered to co-deliver a potent combination therapy, including the cytotoxic docetaxel (DTXL) and the natural wide-spectrum anti-inflammatory curcumin (CURC). Using an oil-in-water emulsion/solvent evaporation technique, four SPN configurations were engineered depending on the therapeutic payload and characterized for their physico-chemical and pharmacological properties. All SPN configurations presented a hydrodynamic diameter of ∼ 185 nm with a narrow size distribution. A biphasic release profile was observed for all the configurations, with almost 90 % of the total drug mass released within the first 24 h. SPN cytotoxic potential was assessed on a panel of human neuroblastoma cells, returning IC50 values in the order of 1 nM at 72 h and documenting a strong synergism between CURC and DTXL. Therapeutic efficacy was tested in a clinically relevant orthotopic model of neuroblastoma, following the injection of SH-SY5Y-Luc+ cells in the left adrenal gland of athymic mice. Although ∼ 2 % of the injected SPN per mass tissue reached the tumor, the overall survival of mice treated with CURC/DTXL-SPN was extended by 50 % and 25 % as compared to the untreated control and the monotherapies, respectively. In conclusion, these results demonstrate that the therapeutic potential of the DTXL/CURC combination can be fully exploited only by reformulating these two compounds into systemically injectable nanoparticles.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Docetaxel/farmacologia , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Polímeros/química , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232538

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumor encountered in childhood. Although there has been significant improvement in the outcomes of patients with high-risk disease, the prognosis for patients with metastatic relapse or refractory disease is poor. Hence, the clinical integration of genome sequencing into standard clinical practice is necessary in order to develop personalized therapy for children with relapsed or refractory disease. The PeRsonalizEdMEdicine (PREME) project focuses on the design of innovative therapeutic strategies for patients suffering from relapsed NB. We performed whole exome sequencing (WES) of patient-matched tumor-normal samples to identify genetic variants amenable to precision medicine. Specifically, two patients were studied (First case: a three-year-old male with early relapsed NB; Second case: a 20-year-old male who relapsed 10 years after the first diagnosis of NB). Results were reviewed by a multi-disciplinary molecular tumor board (MTB) and clinical reports were issued to the ordering physician. WES revealed the mutation c.G320C in the CUL4A gene in case 1 and the mutation c.A484G in the PSMC2 gene in case 2. Both patients were treated according to these actionable alterations, with promising results. The effective treatment of NB is one of the main challenges in pediatric oncology. In the era of precision medicine, the need to design new therapeutic strategies for NB is fundamental. Our results demonstrate the feasibility of incorporating clinical WES into pediatric oncology practice.


Assuntos
Neuroblastoma , Medicina de Precisão , Adulto , Criança , Pré-Escolar , Proteínas Culina/genética , Humanos , Masculino , Oncologia , Mutação , Recidiva Local de Neoplasia/genética , Medicina de Precisão/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
5.
Pharmacol Res ; 163: 105294, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217536

RESUMO

Caelyx and Myocet are clinically used liposomal forms of doxorubicin (Dox). To explore ways to improve their therapeutic index, we have studied their activity in vitro and in vivo when locally delivered by fibrin gels (FBGs). In vivo local toxic and anti-tumour activities of loaded FBGs were assessed in two immunodeficient mouse orthotopic human neuroblastoma (NB) models after application in the visceral space above the adrenal gland, either still tumour-bearing or after tumour removal. In parallel, in vitro assays were used to mimic the in vivo overlaying of FBGs on the tumour surface. FBGs were prepared with different concentrations of fibrinogen (FG) and clotted in the presence of Ca2+ and thrombin. The in vitro assays showed that FBGs loaded with Myocet possess a cytotoxic activity against NB cell lines generally greater than those loaded with free Dox or Caelyx. In vivo FBGs loaded with Myocet showed lower general and local toxicities as compared to gels loaded with Caelyx or free Dox, and also to free Dox administered i.v. (all treatments with Dox at 2.5 mg/Kg). The anti-tumour activity, evaluated in the two mouse orthotopic NB models of adjuvant and neo-adjuvant therapy, resulted in a better performance of FBGs loaded with Myocet compared to the other local (FBGs loaded with Caelyx or free Dox) or systemic (free Dox) treatments (administered at 2.5 and 5 mg/Kg Dox). Specifically, the application of FBGs at 40 mg/mL in the adjuvant model caused 92 % tumour volume reduction, while by the neo-adjuvant application of FBGs at 22 mg/mL a re-growing tumour volume reduction of 89 % was obtained. Taken together, our in vitro and in vivo results indicate a significantly higher activity for the FBGs loaded with Myocet. In particular, the lower toicity coupled with the higher anti-tumour activity on both the local treatment modalities strongly suggest a better therapeutic index when Myocet is administered through FBGs. Therefore, FBGs loaded with Myocet may be considered as a possible new tool for the loco-regional treatment of NB or even other tumour histotypes treatable by loco-regional chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Fibrina/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Feminino , Géis , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Nus , Neuroblastoma/patologia , Polietilenoglicóis/administração & dosagem
6.
Small ; 16(20): e1906426, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323486

RESUMO

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.


Assuntos
MicroRNAs , Nanopartículas , Neuroblastoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Criança , Humanos , Camundongos , MicroRNAs/genética , Recidiva Local de Neoplasia , Proteínas de Ligação a RNA
7.
J Nucl Cardiol ; 27(6): 2183-2194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737636

RESUMO

BACKGROUND: Oxidative stress and its interference on myocardial metabolism play a major role in Doxorubicin (DXR) cardiotoxic cascade. METHODS: Mice models of neuroblastoma (NB) were treated with 5 mg DXR/kg, either free (Free-DXR) or encapsulated in untargeted (SL[DXR]) or in NB-targeting Stealth Liposomes (pep-SL[DXR] and TP-pep-SL[DXR]). Control mice received saline. FDG-PET was performed at baseline (PET1) and 7 days after therapy (PET2). At PET2 Troponin-I and NT-proBNP were assessed. Explanted hearts underwent biochemical, histological, and immunohistochemical analyses. Finally, FDG uptake and glucose consumption were simultaneously measured in cultured H9c2 in the presence/absence of Free-DXR (1 µM). RESULTS: Free-DXR significantly enhanced the myocardial oxidative stress. Myocardial-SUV remained relatively stable in controls and mice treated with liposomal formulations, while it significantly increased at PET2 with respect to baseline in Free-DXR. At this timepoint, myocardial-SUV was directly correlated with both myocardial redox stress and hexose-6-phosphate-dehydrogenase (H6PD) enzymatic activity, which selectively sustain cellular anti-oxidant mechanisms. Intriguingly, in vitro, Free-DXR selectively increased FDG extraction fraction without altering the corresponding value for glucose. CONCLUSION: The direct correlation between cardiac FDG uptake and oxidative stress indexes supports the potential role of FDG-PET as an early biomarker of DXR oxidative damage.


Assuntos
Doxorrubicina/química , Fluordesoxiglucose F18/farmacocinética , Coração/efeitos dos fármacos , Miocárdio/patologia , Estresse Oxidativo , Animais , Antioxidantes , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucose/química , Glucose/farmacocinética , Humanos , Imuno-Histoquímica , Cinética , Camundongos , Camundongos Nus , Neuroblastoma/tratamento farmacológico , Oxirredução , Tomografia por Emissão de Pósitrons
8.
Int J Cancer ; 144(12): 3146-3159, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30536898

RESUMO

High-risk neuroblastoma, a predominantly TP53 wild-type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows in vitro synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the in vivo efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in TP53 wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography-mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post-treatment with maximal p53 pathway activation 3-6 h post-treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with TP53 wt SHSY5Y-Luc and NB1691-Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favourable pharmacokinetic profile consistent with intermittent dosing and was well tolerated alone and in combination. These preclinical studies support the further development of idasanutlin in combination with temozolomide in neuroblastoma in early phase clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Temozolomida/farmacologia , para-Aminobenzoatos/farmacologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pirrolidinas/farmacocinética , Distribuição Aleatória , Temozolomida/administração & dosagem , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , para-Aminobenzoatos/farmacocinética
9.
Small ; 15(10): e1804591, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706636

RESUMO

Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.


Assuntos
Lipossomos/química , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bortezomib/química , Bortezomib/uso terapêutico , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Fenretinida/química , Fenretinida/uso terapêutico , Humanos
10.
Toxicol Appl Pharmacol ; 385: 114811, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705944

RESUMO

In vivo local antitumor activity of fibrin gels (FBGs) loaded with the poly-cyclodextrin oCD-NH2/Dox, compared to free Dox, was evaluated in two mouse orthotopic neuroblastoma (NB) models, after positioning of the releasing devices in the visceral space. FBGs were prepared at the fibrinogen (FG) concentrations of 22 and 40 mg/ml clotted in the presence of 0.81 mM/mg FG Ca2+ and 1.32 U/mg FG thrombin. Our results indicate that FBGs loaded with oCD-NH2/Dox and applied as neoadjuvant loco-regional treatment, show an antitumor activity significantly greater than that displayed by the same FBGs loaded with identical dose of Dox or after free Dox administered intra venous (iv). In particular, FBGs prepared at 40 mg/ml showed a slightly lower antitumor activity, although after their positioning we observed a significant initial reduction of tumor burden lasting for several days after gel implantation. FBGs at 22 mg/ml loaded with oCD-NH2/Dox and applied after tumor removal (adjuvant treatment model) showed a significantly better antitumor activity than the iv administration of free Dox, with 90% tumor regrowth reduction compared to untreated controls. In all cases the weight loss post-treatment was limited after gel application, although in the adjuvant treatment the loss of body weight lasted longer than in the other treatment modality. In accordance with our recent published data on the low local toxic effects of FBGs, the present findings also underline an increase of the therapeutic index of Dox when locally administered through FBGs loaded with the oCD-NH2/Dox complex.


Assuntos
Celulose/química , Ciclodextrinas/química , Doxorrubicina/administração & dosagem , Fibrina/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Fibrina/farmacologia , Fibrina/toxicidade , Géis , Humanos , Camundongos , Terapia Neoadjuvante , Neuroblastoma/patologia
11.
Pharm Res ; 36(8): 115, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161432

RESUMO

PURPOSE: Fibrin gels (FBGs) are potential delivery vehicles for many drugs, and can be easily prepared from purified components. We previously demonstrated their applicability for the release of different doxorubicin (Dox) nanoparticles used clinically or in an experimental stage, such as its inclusion complex with the amino ß-cyclodextrin polymer (oCD-NH2/Dox). Here we extend these studies by in vitro and in vivo evaluations. METHODS: An in vitro cytotoxicity model consisting of an overlay of a neuroblastoma (NB) cell-containing agar layer above a drug-loaded FBG layer was used. Local toxicity in vivo (histology and blood analysis) was studied in a mouse orthotopic NB model (SHSY5YLuc+ cells implanted into the left adrenal gland). RESULTS: In vitro data show that FBGs loaded with oCD-NH2/Dox have a slightly lower cytotoxicity against NB cell lines than those loaded with Dox. Fibrinogen (FG), and Ca2+ concentrations may modify this activity. In vivo data support a lower general and local toxicity for FBGs loaded with oCD-NH2/Dox than those loaded with Dox. CONCLUSION: Our results suggest a possible increase of the therapeutic index of Dox when locally administered through FBGs loaded with oCD-NH2/Dox, opening the possibility of using these releasing systems for the treatment of neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Celulose/química , Ciclodextrinas/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Fibrina/química , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/sangue , Portadores de Fármacos/toxicidade , Feminino , Géis , Xenoenxertos , Humanos , Camundongos Nus , Nanopartículas/toxicidade
12.
Small ; 14(45): e1802886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30294852

RESUMO

Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neuroblastoma/metabolismo , Neuropilina-1/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Ther ; 25(1): 218-231, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129116

RESUMO

The progression of fibrosis in chronic liver disease is dependent upon hepatic stellate cells (HSCs) transdifferentiating to a myofibroblast-like phenotype. This pivotal process is controlled by enzymes that regulate histone methylation and chromatin structure, which may be targets for developing anti-fibrotics. There is limited pre-clinical experimental support for the potential to therapeutically manipulate epigenetic regulators in fibrosis. In order to learn if epigenetic treatment can halt the progression of pre-established liver fibrosis, we treated mice with the histone methyltransferase inhibitor 3-deazaneplanocin A (DZNep) in a naked form or by selectively targeting HSC-derived myofibroblasts via an antibody-liposome-DZNep targeting vehicle. We discovered that DZNep treatment inhibited multiple histone methylation modifications, indicative of a broader specificity than previously reported. This broad epigenetic repression was associated with the suppression of fibrosis progression as assessed both histologically and biochemically. The anti-fibrotic effect of DZNep was reproduced when the drug was selectively targeted to HSC-derived myofibroblasts. Therefore, the in vivo modulation of HSC histone methylation is sufficient to halt progression of fibrosis in the context of continuous liver damage. This discovery and our novel HSC-targeting vehicle, which avoids the unwanted effects of epigenetic drugs on parenchymal liver cells, represents an important proof-of-concept for epigenetic treatment of liver fibrosis.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Animais , Biomarcadores , Tetracloreto de Carbono/efeitos adversos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Masculino , Camundongos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo
14.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973487

RESUMO

Macrophages, cells belonging to the innate immune system, present a high plasticity grade, being able to change their phenotype in response to environmental stimuli. They play central roles during development, homeostatic tissue processes, tissue repair, and immunity. Furthermore, it is recognized that macrophages are involved in chronic inflammation and that they play central roles in inflammatory diseases and cancer. Due to their large involvement in the pathogenesis of several types of human diseases, macrophages are considered to be relevant therapeutic targets. Nanotechnology-based systems have attracted a lot of attention in this field, gaining a pivotal role as useful moieties to target macrophages in diseased tissues. Among the different approaches that can target macrophages, the most radical is represented by their depletion, commonly obtained by means of clodronate-containing liposomal formulations and/or depleting antibodies. These strategies have produced encouraging results in experimental mouse models. In this review, we focus on macrophage targeting, based on the results so far obtained in preclinical models of inflammatory diseases and cancer. Pros and cons of these therapeutic interventions will be highlighted.


Assuntos
Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Ácido Clodrônico/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/imunologia , Lipossomos , Macrófagos/imunologia , Camundongos , Nanotecnologia , Neoplasias/imunologia
15.
Adv Funct Mater ; 27(36)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28979182

RESUMO

NGR (asparagine-glycine-arginine) is a tumor vasculature-homing peptide motif widely used for the functionalization of drugs, nanomaterials and imaging compounds for cancer treatment and diagnosis. Unfortunately, this motif has a strong propensity to undergo rapid deamidation. This reaction, which converts NGR into isoDGR, is associated with receptor switching from CD13 to integrins, with potentially important manufacturing, pharmacological and toxicological implications. It is found that glycine N-methylation of NGR-tagged nanocarriers completely prevents asparagine deamidation without impairing CD13 recognition. Studies in animal models have shown that the methylated NGR motif can be exploited for delivering radiolabeled compounds and nanocarriers, such as tumor necrosis factor-α (TNF)-bearing nanogold and liposomal doxorubicin, to tumors with improved selectivity. These findings suggest that this NGR derivative is a stable and efficient tumor-homing ligand that can be used for delivering functional nanomaterials to tumor vasculature.

16.
J Hepatol ; 65(1): 75-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27067455

RESUMO

BACKGROUND & AIMS: Currently, staging of fibrosis in preclinical rodent liver fibrosis models is achieved histologically. Many animals are used at multiple time-points to assess disease progression or therapeutic responses. Hepatic myofibroblasts promote liver fibrosis therefore quantifying these cells in vivo could assess disease or predict therapeutic responses in mice. We fluorescently labelled a single chain antibody (C1-3) that binds hepatic myofibroblasts to monitor fibrogenesis in vivo. METHODS: CCl4 was used to induce acute liver injury in WT and cRel(-/-) mice. Bile duct ligation was used to model chronic fibrosis. Hepatic myofibroblasts were depleted using a liposome-drug delivery system or chemically with sulfasalazine. An IVIS® spectrum visualised fluorophore-conjugated C1-3 in vivo. RESULTS: IVIS detection of fluorescently labelled-C1-3 but not a control antibody discriminates between fibrotic and non-fibrotic liver in acute and chronic liver fibrosis models. cRel(-/-) mice have a fibro-protective phenotype and IVIS signal is reduced in CCl4 injured cRel(-/-) mice compared to wild-type. In vivo imaging of fluorescently labelled-C1-3 successfully predicts reductions in hepatic myofibroblast numbers in fibrotic liver disease in response to therapy. CONCLUSIONS: We report a novel fluorescence imaging method to assess murine hepatic myofibroblast numbers in vivo during liver fibrosis and after therapy. We also describe a novel liposomal antibody targeting system to selectively deliver drugs to hepatic myofibroblasts in vivo. C1-3 binds human hepatic myofibroblast therefore imaging labelled-C1-3 could be used for clinical studies in man to help stage fibrosis, demonstrate efficacy of drugs that promote hepatic myofibroblast clearance or predict early therapeutic responses. LAY SUMMARY: In response to damage and injury scars develop in the liver and the main cell that makes the scar tissue is the hepatic myofibroblast (HM). C1-3 is an antibody fragment that binds to the scar forming HM. We have fluorescently labelled C1-3 and given it to mice that have either normal or scarred livers (which contain HM) and then used a machine called an in vivo imaging system (IVIS) that takes pictures of different wavelengths of light, to visualise the antibody binding to HM inside the living mouse. Using fluorescently labelled C1-3 we can assess HM numbers in the injured liver and monitor response to therapy. We have also used C1-3 to target drugs encapsulated in lipid carriers (liposomes) to the HM to kill the HM and reduce the liver disease.


Assuntos
Miofibroblastos , Animais , Ductos Biliares , Fluorescência , Humanos , Fígado , Cirrose Hepática , Camundongos
17.
Molecules ; 20(9): 15893-909, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340616

RESUMO

Despite palliative treatments, glioblastoma (GBM) remains a devastating malignancy with a mean survival of about 15 months after diagnosis. Programmed cell-death is de-regulated in almost all GBM and the re-activation of the mitochondrial apoptotic pathway through exogenous bioactive proteins may represent a powerful therapeutic tool to treat multidrug resistant GBM. We have reported that human Bak protein integrated in Liposomes (LB) was able, in vitro, to activate the mitochondrial apoptotic pathway in colon cancer cells. To evaluate the anti-tumor effects of LB on GBM, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and Western blot analysis were performed on GL26 murine cell line. LB treatment shows a dose-dependent inhibition of cell viability, followed by an up-regulation of Bax and a down-modulation of JNK1 proteins. In GL26-bearing mice, two different routes of administration were tested: intra-tumor and intravenous. Biodistribution, tumor growth and animal survival rates were followed. LB show long-lasting tumor accumulation. Moreover, the intra-tumor administration of LB induces tumor growth delay and total tumor regression in about 40% of treated mice, while the intravenous injection leads to a significant increased life span of mice paralleled by an increased tumor cells apoptosis. Our findings are functional to the design of LB with potentiated therapeutic efficacy for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Proteolipídeos/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipossomos , Camundongos
18.
EBioMedicine ; 99: 104917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104504

RESUMO

BACKGROUND: Neuroblastoma is the most frequent extracranial solid tumour in children, accounting for ∼15% of deaths due to cancer in childhood. The most common clinical presentation are abdominal tumours. An altered gut microbiome composition has been linked to multiple cancer types, and reported in murine models of neuroblastoma. Whether children with neuroblastoma display alterations in gut microbiome composition remains unexplored. METHODS: We assessed gut microbiome composition by shotgun metagenomic profiling in an observational cross-sectional study on 288 individuals, consisting of patients with a diagnosis of neuroblastoma at disease onset (N = 63), healthy controls matching the patients on the main covariates of microbiome composition (N = 94), healthy siblings of the patients (N = 13), mothers of patients (N = 59), and mothers of the controls (N = 59). We examined taxonomic and functional microbiome composition and mother-infant strain transmission patterns. FINDINGS: Patients with neuroblastoma displayed alterations in gut microbiome composition characterised by reduced microbiome richness, decreased relative abundances of 18 species (including Phocaeicola dorei and Bifidobacterium bifidum), enriched protein fermentation and reduced carbohydrate fermentation potential. Using machine learning, we could successfully discriminate patients from controls (AUC = 82%). Healthy siblings did not display such alterations but resembled the healthy control group. No significant differences in maternal microbiome composition nor mother-to-offspring transmission were detected. INTERPRETATION: Patients with neuroblastoma display alterations in taxonomic and functional gut microbiome composition, which cannot be traced to differential maternal seeding. Follow-up research should include investigating potential causal links. FUNDING: Italian Ministry of Health Ricerca Corrente and Ricerca Finalizzata 5 per mille (to MPonzoni); Fondazione Italiana Neuroblastoma (to MPonzoni); European Research Council (ERC-StG project MetaPG-716575 and ERC-CoG microTOUCH-101045015 to NS); the European H2020 program ONCOBIOME-825410 project (to NS); the National Cancer Institute of the National Institutes of Health 1U01CA230551 (to NS); the Premio Internazionale Lombardia e Ricerca 2019 (to NS); the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 Grant 2017J3E2W2 (to NS); EMBO ALTF 593-2020 and Knowledge Generation Project from the Spanish Ministry of Science and Innovation (PID2022-139328OA-I00) (to MV-C).


Assuntos
Microbioma Gastrointestinal , Microbiota , Neuroblastoma , Lactente , Criança , Feminino , Humanos , Animais , Camundongos , Estudos Transversais , Metagenoma , Neuroblastoma/etiologia
19.
Cell Mol Life Sci ; 69(16): 2791-803, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22415324

RESUMO

Chromogranin A (CgA), a secretory protein expressed by many neuroendocrine cells, neurons, cardiomyocytes, and keratinocytes, is the precursor of various peptides that regulate the carbohydrate/lipid metabolism and the cardiovascular system. We have found that CgA, locally administered to injured mice, can accelerate keratinocyte proliferation and wound healing. This biological activity was abolished by the Asp(45)Glu mutation. CgA and its N-terminal fragments, but not the corresponding Asp(45)Glu mutants, could selectively recognize the αvß6-integrin on keratinocytes (a cell-adhesion receptor that is up-regulated during wound healing) and regulate keratinocyte adhesion, proliferation, and migration. No binding was observed to other integrins such as αvß3, αvß5, αvß8, α5ß1, α1ß1, α3ß1, α6ß4, α6ß7 and α9ß1. Structure-activity studies showed that the entire CgA(39-63) region is crucial for αvß6 recognition (K(i) = 7 nM). This region contains an RGD site (residues CgA(43-45)) followed by an amphipathic α-helix (residues CgA(47-63)), both crucial for binding affinity and selectivity. These results suggest that the interaction of the RGD/α-helix motif of CgA with αvß6 regulates keratinocyte physiology in wound healing.


Assuntos
Antígenos de Neoplasias/metabolismo , Cromogranina A/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Queratinócitos/metabolismo , Oligopeptídeos/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Sequência de Aminoácidos , Animais , Ligação Competitiva , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Secretina/análogos & derivados , Secretina/metabolismo , Homologia de Sequência de Aminoácidos , Pele/citologia
20.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37775116

RESUMO

INTRODUCTION: B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS: B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS: All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION: Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.


Assuntos
Antineoplásicos , Imunoconjugados , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Duocarmicinas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos B7/metabolismo , Anticorpos Monoclonais Humanizados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA