Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619107

RESUMO

Reactivation of human cytomegalovirus (HCMV) from latency is a major health consideration for recipients of stem-cell and solid organ transplantations. With over 200,000 transplants taking place globally per annum, virus reactivation can occur in more than 50% of cases leading to loss of grafts as well as serious morbidity and even mortality. Here, we present the most extensive screening to date of epigenetic inhibitors on HCMV latently infected cells and find that histone deacetylase inhibitors (HDACis) and bromodomain inhibitors are broadly effective at inducing virus immediate early gene expression. However, while HDACis, such as myeloid-selective CHR-4487, lead to production of infectious virions, inhibitors of bromodomain (BRD) and extraterminal proteins (I-BETs), including GSK726, restrict full reactivation. Mechanistically, we show that BET proteins (BRDs) are pivotally connected to regulation of HCMV latency and reactivation. Through BRD4 interaction, the transcriptional activator complex P-TEFb (CDK9/CycT1) is sequestered by repressive complexes during HCMV latency. Consequently, I-BETs allow release of P-TEFb and subsequent recruitment to promoters via the superelongation complex (SEC), inducing transcription of HCMV lytic genes encoding immunogenic antigens from otherwise latently infected cells. Surprisingly, this occurs without inducing many viral immunoevasins and, importantly, while also restricting viral DNA replication and full HCMV reactivation. Therefore, this pattern of HCMV transcriptional dysregulation allows effective cytotoxic immune targeting and killing of latently infected cells, thus reducing the latent virus genome load. This approach could be safely used to pre-emptively purge the virus latent reservoir prior to transplantation, thereby reducing HCMV reactivation-related morbidity and mortality.


Assuntos
Proteínas de Ciclo Celular/genética , Citomegalovirus/imunologia , DNA Viral/genética , Epigênese Genética , Histona Desacetilases/genética , Fator B de Elongação Transcricional Positiva/genética , Fatores de Transcrição/genética , Azepinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/imunologia , Ciclina T/genética , Ciclina T/imunologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/imunologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/imunologia , Genes Precoces , Genes Reporter , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/imunologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/imunologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Células THP-1 , Talidomida/análogos & derivados , Talidomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Transcrição Gênica , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
2.
Front Immunol ; 12: 657945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912186

RESUMO

Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+ progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+ monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites. We have analyzed the effect of HCMV latent infection on the secretome of CD14+ monocytes, identifying an upregulation of both CCL8 and CXCL10 chemokines in the CD14+ latency-associated secretome. Unlike CD34+ cells, the CD14+ latency-associated secretome did not induce migration of resting immune cell subsets but did induce migration of activated NK and T cells expressing CXCR3 in a CXCL10 dependent manner. As reported in CD34+ latent infection, the CD14+ latency-associated secretome also suppressed the anti-viral activity of stimulated CD4+ T cells. Surprisingly, however, co-culture of activated autologous CD4+ T cells with latently infected monocytes resulted in reactivation of HCMV at levels comparable to those observed using M-CSF and IL-1ß cytokines. We propose that these events represent a potential strategy to enable HCMV reactivation and local dissemination of the virus at peripheral tissue sites.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Ativação Viral , Latência Viral , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Infecções por Citomegalovirus/metabolismo , Humanos , Ativação Linfocitária/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Replicação Viral
3.
Cell Rep ; 24(3): 594-606, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021158

RESUMO

A subset of viral genes is required for the long-term latent infection of hematopoietic cells by human cytomegalovirus (HCMV). Here, we show that a latency-associated gene product (LUNA) promotes the disruption of cellular PML bodies during latency. Mutation and inhibitor studies reveal that LUNA encodes a deSUMOylase activity responsible for this disruption. Specifically, LUNA encodes a conserved Asp-Cys-Gly motif common to all deSUMOylases. Importantly, mutation of the putative catalytic cysteine is sufficient to reverse LUNA-mediated PML dispersal and markedly reduces the efficiency of viral reactivation. The depletion of PML from cells is sufficient to rescue the reactivation of the LUNA-deficient viruses, arguing that targeting PML is an important biological role of LUNA. Finally, we demonstrate that reactivation of naturally latent HCMV is blocked by deSUMOylase inhibitors. Thus, latent HCMV primes the cellular environment for efficient reactivation via the activity of a virally encoded deSUMOylase.


Assuntos
Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Sequência de Aminoácidos , Antígenos CD34/metabolismo , Carbono-Nitrogênio Liases/química , Carbono-Nitrogênio Liases/genética , Domínio Catalítico , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Humanos , Corpos de Inclusão/metabolismo , Mutação/genética , Células THP-1
4.
FEBS Lett ; 581(27): 5300-6, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17967456

RESUMO

The influenza A virus RNA-dependent RNA polymerase is a heterotrimer composed of PB1, PB2 and PA subunits and essential for viral replication. However, little detailed structural information is available for this important enzyme. We show by circular dichroism spectroscopy that polypeptides from the C-terminus of PB1 that are capable of binding efficiently to PB2 fold into stable alpha-helical structures. Structure prediction analysis of this region of PB1 indicates that it likely consists of a three-helical bundle. Deletion of any of the helices abrogated transcriptional function. Thus, PB1 contains a C-terminal alpha-helical PB2-binding domain that is essential for nucleotide polymerization activity.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Feminino , Humanos , Técnicas In Vitro , Vírus da Influenza A/genética , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Xenopus
5.
Front Immunol ; 8: 733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694811

RESUMO

Human cytomegalovirus (HCMV) primary infection and periodic reactivation of latent virus is generally well controlled by T-cell responses in healthy people. In older donors, overt HCMV disease is not generally seen despite the association of HCMV infection with increased risk of mortality. However, increases in HCMV DNA in urine of older people suggest that, although the immune response retains functionality, immunomodulation of the immune response due to lifelong viral carriage may alter its efficacy. Viral transcription is limited during latency to a handful of viral genes and there is both an IFNγ and cellular IL-10 CD4+ T-cell response to HCMV latency-associated proteins. Production of cIL-10 by HCMV-specific CD4+ T-cells is a candidate for aging-related immunomodulation. To address whether long-term carriage of HCMV changes the balance of cIL-10 and IFNγ-secreting T-cell populations, we recruited a large donor cohort aged 23-78 years and correlated T-cell responses to 11 HCMV proteins with age, HCMV IgG levels, latent HCMV load in CD14+ monocytes, and T-cell numbers in the blood. IFNγ responses by CD4+ and CD8+ T-cells to all HCMV proteins were detected, with no age-related increase in this cohort. IL-10-secreting CD4+ T cell responses were predominant to latency-associated proteins but did not increase with age. Quantification of HCMV genomes in CD14+ monocytes, a known site of latent HCMV carriage, did not reveal any increase in viral genome copies in older donors. Importantly, there was a significant positive correlation between the latent viral genome copy number and the breadth and magnitude of the IFNγ T-cell response to HCMV proteins. This study suggests in healthy aged donors that HCMV-specific changes in the T cell compartment were not affected by age and were effective, as viremia was a very rare event. Evidence from studies of unwell aged has shown HCMV to be an important comorbidity factor, surveillance of latent HCMV load and low-level viremia in blood and body fluids, alongside typical immunological measures and assessment of the antiviral capacity of the HCMV-specific immune cell function would be informative in determining if antiviral treatment of HCMV replication in the old maybe beneficial.

6.
mBio ; 8(6)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208743

RESUMO

Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells.IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection-it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Monócitos/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Latência Viral/genética , Diferenciação Celular , Células Cultivadas , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/terapia , Infecções por Citomegalovirus/virologia , Expressão Gênica , Histonas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Monócitos/virologia , NF-kappa B/metabolismo , Piperidinas/farmacologia , Regiões Promotoras Genéticas , Deleção de Sequência , Linfócitos T Citotóxicos/virologia , Células THP-1 , Proteínas Virais/antagonistas & inibidores , Ativação Viral/genética , Latência Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA