Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 192: 106431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331351

RESUMO

Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.


Assuntos
Microcefalia , Animais , Feminino , Humanos , Masculino , Camundongos , Imagem de Tensor de Difusão , Gotículas Lipídicas , Camundongos Knockout , Microcefalia/genética , Microcefalia/metabolismo , Neurônios/metabolismo
2.
Cancer Immunol Immunother ; 72(10): 3387-3393, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37477652

RESUMO

BACKGROUND: Brain metastases are the most common intracranial tumors with an increasing incidence. They are an important cause of morbidity and mortality in patients with solid organ cancer and a focus of recent clinical research and experimental interest. Immune checkpoint inhibitors are being increasingly used to treat solid organ cancers. METHODS: To determine whether immune checkpoint inhibitors were biologically effective in the brain, we compared melanoma brain metastasis samples where treatment with ipilimumab had occurred preoperatively to those who had not received any immune modulating therapy and looked for histopathological (invasion, vascularity, metastasis inducing proteins, matrix metalloproteinases, immune cell infiltration, tissue architecture) and advanced MRI differences (diffusion weighted imaging). RESULTS: Co-localized tissue samples from the same regions as MRI regions of interest showed significantly lower vascularity (density of CD34 + vessels) in the core and higher T-cell infiltration (CD3 + cells) in the leading edge for ipilimumab-treated brain metastasis samples than for untreated cases and this correlated with a higher tumor ADC signal at post-treatment/preoperative MRI brain. CONCLUSIONS: Treatment of a melanoma brain metastasis with ipilimumab appears to cause measurable biological changes in the tumor that can be correlated with post-treatment diffusion weighted MRI imaging, suggesting both a mechanism of action and a possible surrogate marker of efficacy.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Linfócitos T , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/secundário
3.
J Transl Med ; 21(1): 287, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118754

RESUMO

BACKGROUND: Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS: Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS: Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS: Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Progressão da Doença , Imageamento por Ressonância Magnética , Estudos Retrospectivos
4.
NMR Biomed ; 36(3): e4855, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269130

RESUMO

Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice. Rodents were intracranially injected with GBM cells in the right cortex and tumor growth was monitored using T2 -weighted images. Animals were treated once daily with intraperitoneal injections of 4 mg/kg JAS239 (F98 rats, n = 6; 9L rats, n = 6; GL261 mice, n = 5) or saline (control group, F98 rats, n = 6; 9L rats, n = 2; GL261 mice, n = 5) for five consecutive days. Single voxel spectra were acquired on Days 0 (T0, baseline) and 6 (T6, end of treatment) from the tumor as well as the contralateral normal brain using a PRESS sequence. Changes in metabolite ratios (tCho/tCr, tCho/NAA, mI/tCr, Glx/tCr and (Lip + Lac)/Cr) were used to assess metabolic pathway alterations in response to JAS239. Tumor growth arrest was noted in all models in response to JAS239 treatment compared with saline-treated animals, with a significant reduction (p < 0.05) in the F98 model. A reduction in tCho/tCr was observed with JAS239 treatment in all GBM models, indicating reduced phospholipid metabolism, with the highest reduction in 9L followed by GL261 and F98 tumors. A significant reduction (p < 0.05) in the tCho/NAA ratio was observed in the 9L model. A significant reduction in mI/tCr (p < 0.05) was found in JAS239-treated F98 tumors compared with the saline-treated animals. A non-significant trend of reduction in Glx/tCr was observed only in F98 and 9L tumors. JAS239-treated F98 tumors also showed a significant increase in Lip + Lac (p < 0.05), indicating increased cell death. This study demonstrated the utility of MRS in assessing metabolic changes in GBM in response to choline kinase inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Roedores/metabolismo , Colina Quinase , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores de Antígenos de Linfócitos T , Colina/metabolismo
5.
Hepatology ; 74(2): 973-986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872408

RESUMO

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Assuntos
Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatectomia , Hepatócitos , Humanos , Fígado/fisiologia , Fígado/cirurgia , Regeneração Hepática/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/administração & dosagem , Cultura Primária de Células
6.
J Clin Ultrasound ; 50(9): 1353-1359, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36205388

RESUMO

In view of the inherent limitations associated with performing dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in clinical settings, current study was designed to provide a proof of principle that Doppler sonography and DCE-MRI derived perfusion parameters yield similar hemodynamic information from metastatic lymph nodes in squamous cell carcinomas of head and neck (HNSCCs). Strong positive correlations between volume fraction of plasma space in tissues (Vp ) and blood volume (r = 0.72, p = 0.02) and between Vp and %area perfused (r = 0.65, p = 0.04) were observed. Additionally, a moderate positive correlation trending towards significance was obtained between volume transfer constant (Ktrans ) and %area perfused (r = 0.49, p = 0.09).


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Meios de Contraste , Quimioterapia de Indução , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Imageamento por Ressonância Magnética/métodos
7.
Magn Reson Med ; 86(1): 382-392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33533114

RESUMO

PURPOSE: To establish high-frequency magnetic resonance electrical properties tomography (MREPT) as a novel contrast mechanism for the assessment of glioblastomas using a rat brain tumor model. METHODS: Six F98 intracranial tumor bearing rats were imaged longitudinally 8, 11 and 14 days after tumor cell inoculation. Conductivity and mean diffusivity maps were generated using MREPT and Diffusion Tensor Imaging. These maps were co-registered with T2 -weighted images and volumes of interests (VOIs) were segmented from the normal brain, ventricles, edema, viable tumor, tumor rim, and tumor core regions. Longitudinal changes in conductivity and mean diffusivity (MD) values were compared in these regions. A correlation analysis was also performed between conductivity and mean diffusivity values. RESULTS: The conductivity of ventricles, edematous area and tumor regions (tumor rim, viable tumor, tumor core) was significantly higher (P < .01) compared to the contralateral cortex. The conductivity of the tumor increased over time while MD from the tumor did not change. A marginal positive correlation was noted between conductivity and MD values for tumor rim and viable tumor, whereas this correlation was negative for the tumor core. CONCLUSION: We demonstrate a novel contrast mechanism based on ionic concentration and mobility, which may aid in providing complementary information to water diffusion in probing the microenvironment of brain tumors.


Assuntos
Neoplasias Encefálicas , Imagem de Tensor de Difusão , Animais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Ratos , Tomografia , Microambiente Tumoral
8.
Brain ; 143(7): 2058-2072, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32671406

RESUMO

Intravascular injection of certain adeno-associated virus vector serotypes can cross the blood-brain barrier to deliver a gene into the CNS. However, gene distribution has been much more limited within the brains of large animals compared to rodents, rendering this approach suboptimal for treatment of the global brain lesions present in most human neurogenetic diseases. The most commonly used serotype in animal and human studies is 9, which also has the property of being transported via axonal pathways to distal neurons. A small number of other serotypes share this property, three of which were tested intravenously in mice compared to 9. Serotype hu.11 transduced fewer cells in the brain than 9, rh8 was similar to 9, but hu.32 mediated substantially greater transduction than the others throughout the mouse brain. To evaluate the potential for therapeutic application of the hu.32 serotype in a gyrencephalic brain of larger mammals, a hu.32 vector expressing the green fluorescent protein reporter gene was evaluated in the cat. Transduction was widely distributed in the cat brain, including in the cerebral cortex, an important target since mental retardation is an important component of many of the human neurogenetic diseases. The therapeutic potential of a hu.32 serotype vector was evaluated in the cat homologue of the human lysosomal storage disease alpha-mannosidosis, which has globally distributed lysosomal storage lesions in the brain. Treated alpha-mannosidosis cats had reduced severity of neurological signs and extended life spans compared to untreated cats. The extent of therapy was dose dependent and intra-arterial injection was more effective than intravenous delivery. Pre-mortem, non-invasive magnetic resonance spectroscopy and diffusion tensor imaging detected differences between the low and high doses, and showed normalization of grey and white matter imaging parameters at the higher dose. The imaging analysis was corroborated by post-mortem histological analysis, which showed reversal of histopathology throughout the brain with the high dose, intra-arterial treatment. The hu.32 serotype would appear to provide a significant advantage for effective treatment of the gyrencephalic brain by systemic adeno-associated virus delivery in human neurological diseases with widespread brain lesions.


Assuntos
Encéfalo/virologia , Dependovirus , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , alfa-Manosidose/genética , Animais , Encéfalo/patologia , Gatos , Técnicas de Transferência de Genes , Transdução Genética
9.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918043

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem , Glioblastoma/diagnóstico por imagem , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/terapia , Tomada de Decisão Clínica , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Gerenciamento Clínico , Suscetibilidade a Doenças , Glioblastoma/etiologia , Glioblastoma/terapia , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Prognóstico , Resultado do Tratamento
10.
NMR Biomed ; 33(11): e4386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729637

RESUMO

The utility of diffusion kurtosis imaging (DKI) for assessing intra-tumor heterogeneity was evaluated in a rat model of glioblastoma multiforme. Longitudinal MRI including T2 -weighted and diffusion-weighted MRI (DWI) was performed on six female Fischer rats 8, 11 and 14 days after intracranial transplantation of F98 cells. T2 -weighted images were used to measure the tumor volumes and DWI images were used to compute diffusion tensor imaging (DTI) and DWI based parametric maps including mean diffusivity (MD), mean kurtosis (MK), axial diffusivity (AD), axial kurtosis, radial diffusivity, radial kurtosis, fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA). Median values from the segmented normal contralateral cortex, tumor and edema from the diffusion parameters were compared at the three imaging time points to assess any changes in tumor heterogeneity over time. ex vivo DKI was also performed in a representative sample and compared with histology. Significant differences were observed between normal cortex, tumor and edema in both the DTI and DKI parameters. Notably, at the earliest time point MK and KFA were significantly different between normal cortex and tumor in comparison with MD or FA. Although a decreasing trend in MD, AD and FA values of the tumor were observed as the tumor grew, no significant changes in any of the DTI or DKI parameters were observed longitudinally. While DKI was equally sensitive to DTI in differentiating tumor from edema and normal brain, it was unable to detect longitudinal increases in intra-tumoral heterogeneity in the F98 model of glioblastoma multiforme.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão , Glioblastoma/diagnóstico por imagem , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/patologia , Ratos Endogâmicos F344
11.
Br J Cancer ; 120(1): 54-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478409

RESUMO

EGFRvIII targeted chimeric antigen receptor T (CAR-T) cell therapy has recently been reported for treating glioblastomas (GBMs); however, physiology-based MRI parameters have not been evaluated in this setting. Ten patients underwent multiparametric MRI at baseline, 1, 2 and 3 months after CAR-T therapy. Logistic regression model derived progression probabilities (PP) using imaging parameters were used to assess treatment response. Four lesions from "early surgery" group demonstrated high PP at baseline suggestive of progression, which was confirmed histologically. Out of eight lesions from remaining six patients, three lesions with low PP at baseline remained stable. Two lesions with high PP at baseline were associated with large decreases in PP reflecting treatment response, whereas other two lesions with high PP at baseline continued to demonstrate progression. One patient didn't have baseline data but demonstrated progression on follow-up. Our findings indicate that multiparametric MRI may be helpful in monitoring CAR-T related early therapeutic changes in GBM patients.


Assuntos
Receptores ErbB/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva , Recidiva Local de Neoplasia/terapia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
12.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30919510

RESUMO

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Prótons
13.
NMR Biomed ; 32(10): e4070, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107583

RESUMO

Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non-invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.


Assuntos
Metabolismo dos Lipídeos , Imagem Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Apoptose , Colina Quinase/antagonistas & inibidores , Colina Quinase/metabolismo , Progressão da Doença , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
14.
NMR Biomed ; 32(2): e4042, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556932

RESUMO

Accurate differentiation of true progression (TP) from pseudoprogression (PsP) in patients with glioblastomas (GBMs) is essential for planning adequate treatment and for estimating clinical outcome measures and future prognosis. The purpose of this study was to investigate the utility of three-dimensional echo planar spectroscopic imaging (3D-EPSI) in distinguishing TP from PsP in GBM patients. For this institutional review board approved and HIPAA compliant retrospective study, 27 patients with GBM demonstrating enhancing lesions within six months of completion of concurrent chemo-radiation therapy were included. Of these, 18 were subsequently classified as TP and 9 as PsP based on histological features or follow-up MRI studies. Parametric maps of choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) were computed and co-registered with post-contrast T1 -weighted and FLAIR images. All lesions were segmented into contrast enhancing (CER), immediate peritumoral (IPR), and distal peritumoral (DPR) regions. For each region, Cho/Cr and Cho/NAA ratios were normalized to corresponding metabolite ratios from contralateral normal parenchyma and compared between TP and PsP groups. Logistic regression analyses were performed to obtain the best model to distinguish TP from PsP. Significantly higher Cho/NAA was observed from CER (2.69 ± 1.00 versus 1.56 ± 0.51, p = 0.003), IPR (2.31 ± 0.92 versus 1.53 ± 0.56, p = 0.030), and DPR (1.80 ± 0.68 versus 1.19 ± 0.28, p = 0.035) regions in TP patients compared with those with PsP. Additionally, significantly elevated Cho/Cr (1.74 ± 0.44 versus 1.34 ± 0.26, p = 0.023) from CER was observed in TP compared with PsP. When these parameters were incorporated in multivariate regression analyses, a discriminatory model with a sensitivity of 94% and a specificity of 87% was observed in distinguishing TP from PsP. These results indicate the utility of 3D-EPSI in differentiating TP from PsP with high sensitivity and specificity.


Assuntos
Progressão da Doença , Imagem Ecoplanar , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Área Sob a Curva , Feminino , Humanos , Modelos Logísticos , Masculino , Metaboloma , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Curva ROC
15.
J Magn Reson Imaging ; 49(1): 184-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676844

RESUMO

BACKGROUND: Accurate differentiation of brain infections from necrotic glioblastomas (GBMs) may not always be possible on morphologic MRI or on diffusion tensor imaging (DTI) and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) if these techniques are used independently. PURPOSE: To investigate the combined analysis of DTI and DSC-PWI in distinguishing brain injections from necrotic GBMs. STUDY TYPE: Retrospective. POPULATION: Fourteen patients with brain infections and 21 patients with necrotic GBMs. FIELD STRENGTH/SEQUENCE: 3T MRI, DTI, and DSC-PWI. ASSESSMENT: Parametric maps of mean diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), and planar anisotropy (CP) and leakage corrected cerebral blood volume (CBV) were computed and coregistered with postcontrast T1 -weighted and FLAIR images. All lesions were segmented into the central core and enhancing region. For each region, median values of MD, FA, CL, CP, relative CBV (rCBV), and top 90th percentile of rCBV (rCBVmax ) were measured. STATISTICAL TESTS: All parameters from both regions were compared between brain infections and necrotic GBMs using Mann-Whitney tests. Logistic regression analyses were performed to obtain the best model in distinguishing these two conditions. RESULTS: From the central core, significantly lower MD (0.90 × 10-3 ± 0.44 × 10-3 mm2 /s vs. 1.66 × 10-3 ± 0.62 × 10-3 mm2 /s, P = 0.001), significantly higher FA (0.15 ± 0.06 vs. 0.09 ± 0.03, P < 0.001), and CP (0.07 ± 0.03 vs. 0.04 ± 0.02, P = 0.009) were observed in brain infections compared to those in necrotic GBMs. Additionally, from the contrast-enhancing region, significantly lower rCBV (1.91 ± 0.95 vs. 2.76 ± 1.24, P = 0.031) and rCBVmax (3.46 ± 1.41 vs. 5.89 ± 2.06, P = 0.001) were observed from infective lesions compared to necrotic GBMs. FA from the central core and rCBVmax from enhancing region provided the best classification model in distinguishing brain infections from necrotic GBMs, with a sensitivity of 91% and a specificity of 93%. DATA CONCLUSION: Combined analysis of DTI and DSC-PWI may provide better performance in differentiating brain infections from necrotic GBMs. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:184-194.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Infecções/diagnóstico por imagem , Angiografia por Ressonância Magnética , Necrose/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Encéfalo/microbiologia , Meios de Contraste/administração & dosagem , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos
16.
Mol Imaging ; 17: 1536012118809585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30392458

RESUMO

Metastasis is the most common cause of death for patients with cancer. To fully understand the steps involved in metastatic dissemination, in vivo models are required, of which murine ones are the most common. Therefore, preclinical imaging methods such as magnetic resonance imaging (MRI) have mainly been developed for small mammals and their potential to monitor cancer growth and metastasis in nonmammalian models is not fully harnessed. We have here used MRI to measure primary neuroblastoma tumor size and metastasis in a chick embryo model. We compared its sensitivity and accuracy to end-point fluorescence detection upon dissection. Human neuroblastoma cells labeled with green fluorescent protein (GFP) and micron-sized iron particles were implanted on the extraembryonic chorioallantoic membrane of the chick at E7. T2 RARE, T2-weighted fast low angle shot (FLASH) as well as time-of-flight MR angiography imaging were applied at E14. Micron-sized iron particle labeling of neuroblastoma cells allowed in ovo observation of the primary tumor and tumor volume measurement noninvasively. Moreover, T2 weighted and FLASH imaging permitted the detection of small metastatic deposits in the chick embryo, thereby reinforcing the potential of this convenient, 3R compliant, in vivo model for cancer research.


Assuntos
Imageamento por Ressonância Magnética , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/patologia , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/patologia , Modelos Animais de Doenças , Desenvolvimento Embrionário , Humanos , Ferro/química , Metástase Neoplásica/diagnóstico , Tamanho da Partícula , Carga Tumoral
17.
Magn Reson Med ; 80(4): 1686-1696, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29508443

RESUMO

PURPOSE: To investigate the feasibility of measuring the subtle disruption of blood-brain barrier (BBB) using DCE-MRI with a scan duration shorter than 10 min. METHODS: The extended Patlak-model (EPM) was introduced to include the effect of plasma flow (Fp ) in the estimation of vascular permeability-surface area product (PS). Numerical simulation studies were carried out to investigate how the reduction in scan time affects the accuracy in estimating contrast kinetic parameters. DCE-MRI studies of the rat brain were conducted with Fisher rats to confirm the results from the simulation. Intracranial F98 glioblastoma models were used to assess areas with different levels of permeability. In the normal brain tissues, the Patlak model (PM) and EPM were compared, whereas the 2-compartment-exchange-model (TCM) and EPM were assessed in the peri-tumor and the tumor regions. RESULTS: The simulation study results demonstrated that scan time reduction could lead to larger bias in PS estimated by PM (>2000%) than by EPM (<47%), especially when Fp is low. When Fp was high as in the gray matter, the bias in PM-PS (>900%) were larger than that in EPM-PS (<42%). The animal study also showed similar results, where the PM parameters were more sensitive to the scan duration than the EPM parameters. It was also demonstrated that, in the peri-tumor region, the EPM parameters showed less change by scan duration than the TCM parameters. CONCLUSION: The results of this study suggest that EPM can be used to measure PS with a scan duration of 10 min or less.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Permeabilidade Capilar/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Meios de Contraste , Feminino , Glioblastoma/diagnóstico por imagem , Ratos , Fatores de Tempo
18.
Magn Reson Med ; 80(5): 1765-1775, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29520831

RESUMO

PURPOSE: Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. METHODS: A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. RESULTS: When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. CONCLUSION: The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos
19.
Toxicol Appl Pharmacol ; 332: 64-74, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28755860

RESUMO

The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Fígado/efeitos dos fármacos , Técnicas Fotoacústicas , Acetilcisteína/administração & dosagem , Alanina Transaminase/sangue , Animais , Bilirrubina/sangue , Biomarcadores/sangue , Sobrevivência Celular/efeitos dos fármacos , Glutationa/sangue , Proteína HMGB1/sangue , Fígado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue
20.
J Transl Med ; 14(1): 274, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659543

RESUMO

BACKGROUND: Mutations in the isocitrate dehydrogenase enzyme are present in a majority of lower-grade gliomas and secondary glioblastomas. This mis-sense mutation results in the neomorphic reduction of isocitrate dehydrogenase resulting in an accumulation of the "oncometabolite" 2-hydroxyglutarate (2HG). Detection of 2HG can thus serve as a surrogate biomarker for these mutations, with significant translational implications including improved prognostication. Two dimensional localized correlated spectroscopy (2D L-COSY) at 7T is a highly-sensitive non-invasive technique for assessing brain metabolism. This study aims to assess tumor metabolism using 2D L-COSY at 7T for the detection of 2HG in IDH-mutant gliomas. METHODS: Nine treatment-naïve patients with suspected intracranial neoplasms were scanned at 7T MRI/MRS scanner using the 2D L-COSY technique. 2D-spectral processing and analyses were performed using a MATLAB-based reconstruction algorithm. Cross and diagonal peak volumes were quantified in the 2D L-COSY spectra and normalized with respect to the creatine peak at 3.0 ppm and quantified data were compared with previously-published data from six normal subjects. Detection of 2HG was validated using findings from immunohistochemical (IHC) staining in patients who subsequently underwent surgical resection. RESULTS: 2HG was detected in both of the IDH-mutated gliomas (grade III Anaplastic Astrocytoma and grade II Diffuse Astrocytoma) and was absent in IDH wild-type gliomas and in a patient with breast cancer metastases. 2D L-COSY was also able to resolve complex and overlapping resonances including phosphocholine (PC) from glycerophosphocholine (GPC), lactate (Lac) from lipids and glutamate (Glu) from glutamine (Gln). CONCLUSIONS: This study demonstrates the ability of 2D L-COSY to unambiguously detect 2HG in addition to other neuro metabolites. These findings may aid in establishing 2HG as a biomarker of malignant progression as well as for disease monitoring in IDH-mutated gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA