RESUMO
A new host material for Single-Layer Phosphorescent Organic Light-Emitting Diodes (SL-PhOLED) is reported, namely SPA-2-FDMB, using the dimesitylborane (DMB) fragment as an acceptor unit. The molecular design is constructed on the general donor-spiro-acceptor architecture, which consists of connecting, via a spiro bridge, a donor and an acceptor units in order to avoid strong interaction between them. The DMB fragment is known for many electronic applications (notably Aggregation-Induced Emission) but has not been used yet for SL-PhOLED applications. This appears particularly interesting, as the development of this simplified technology has shown that only a few electron-accepting fragments such as diphenylphosphine oxide can provide high-performance devices. Herein, the yellow-emitting SL-PhOLED using SPA-2-FDMB as host presents an External Quantum Efficiency of 8.1% (Current Efficiency of 24.9 cd.A-1) with a low threshold voltage of 2.6 V. As SPA-2-FDMB presents a sharp HOMO/LUMO difference, the good matching of HOMO and LUMO energy levels with the Fermi level of the electrodes is responsible for these performances. The low LUMO level of -2.61 eV also appears particularly important. These performances are, to date, the highest reported for a yellow/orange-emitting SL-PhOLED and show the potential of DMB unit in the single-layer technology.
RESUMO
This review aims to discuss organic semiconductors constructed on dihydroindenofluorene positional isomers, which are key molecular scaffolds in organic electronics. Bridged oligophenylenes are key organic semiconductors that have allowed the development of organic electronic technologies. Dihydroindenofluorenes (DHIFs) belong to the family of bridged oligophenylenes constructed on a terphenyl backbone. They have proven to be very promising building blocks for the construction of highly efficient organic semiconductors for all OE devices, namely organic light emitting diodes (OLEDs), phosphorescent OLEDs, organic field-effect transistors (OFETs), solar cells, etc.
RESUMO
Nanohoops, cyclic association of π-conjugated systems to form a hoop-shaped molecule, have been widely developed in the last 15â years. Beyond the synthetic challenge, the strong interest towards these molecules arises from their radially oriented π-orbitals, which provide singular properties to these fascinating structures. Thanks to their particular cylindrical arrangement, this new generation of curved molecules have been already used in many applications such as host-guest complexation, biosensing, bioimaging, solid-state emission and catalysis. However, their potential in organic electronics has only started to be explored. From the first incorporation as an emitter in a fluorescent organic light emitting diode (OLED), to the recent first incorporation as a host in phosphorescent OLEDs or as charge transporter in organic field-effect transistors and in organic photovoltaics, this field has shown important breakthroughs in recent years. These findings have revealed that curved materials can play a key role in the future and can even be more efficient than their linear counterparts. This can have important repercussions for the future of electronics. Time has now come to overview the different nanohoops used to date in electronic devices in order to stimulate the future molecular designs of functional materials based on these macrocycles.
RESUMO
Pure aromatic hydrocarbon materials (PHCs) represent a new generation of host materials for phosphorescent OLEDs (PhOLEDs), free of heteroatoms. They reduce the molecular complexity, can be easily synthesized and are an important direction towards robust devices. As heteroatoms can be involved in bonds dissociations in operating OLEDs through exciton induced degradation processes, developing novel PHCs appear particularly relevant for the future of this technology. In the present work, we report a series of extended PHCs constructed by the assembly of three spirobifluorene fragments. The resulting positional isomers present a high triplet energy level, a wide HOMO/LUMO difference and improved thermal and morphological properties compared to previously reported PHCs. These characteristics are beneficial for the next generation of host materials for PhOLEDs and provide relevant design guidelines. When used as a host in blue-emitting PhOLEDs, which are still the weakest link of the field, a very high EQE of 24 % and low threshold voltage of 3.56â V were obtained with a low-efficiency roll-off. This high performance strengthens the position of PHC strategy as an efficient alternative for OLED technology and opens the way to a more simple electronic.
RESUMO
In the field of π-conjugated nanohoops, the size of the macrocycle has a strong impact on its structural characteristics, which in turn affect its electronic properties. In this work, we report the first experimental investigations linking the size of a nanohoop to its charge transport properties, a key property in organic electronics. We describe the synthesis and study of the first example of a cyclocarbazole possessing five constituting building units, namely [5]-cyclo-N-butyl-2,7-carbazole, [5]C-Bu-Cbz. By comparison with a shorter analogue, [4]-cyclo-N-butyl-2,7-carbazole, [4]C-Bu-Cbz, we detail the photophysical, electrochemical, morphological and charge transport properties, highlighting the key role played by the hoop size. In particular, we show that the saturated field effect mobility of [5]C-Bu-Cbz is four times higher than that of its smaller analogue [4]C-Bu-Cbz (4.22×10-5 vs 1.04×10-5 â cm2 V-1 s-1 ). However, the study of the other organic field-effect transistor characteristics (threshold voltage VTH and subthreshold slope SS) suggest that a small nanohoop is beneficial for good organization of the molecules in thin films, whereas a large one increases the density of structural defects, and hence of traps for the charge carriers. The present findings are of interest for the further development of nanohoops in electronics.
RESUMO
To date, all efficient host materials reported for phosphorescent OLEDs (PhOLEDs) are constructed with heteroatoms, which have a crucial role in the device performance. However, it has been shown in recent years that the heteroatoms not only increase the design complexity but can also be involved in the instability of the PhOLED, which is nowadays the most important obstacle to overcome. Herein, we design pure aromatic hydrocarbon materials (PHC) as very efficient hosts in high-performance white and blue PhOLEDs. With EQE of 27.7 %, the PHC-based white PhOLEDs display similar efficiency as the best reported with heteroatom-based hosts. Incorporated as a host in a blue PhOLED, which are still the weakest links of the technology, a very high EQE of 25.6 % is reached, surpassing, for the first time, the barrier of 25 % for a PHC and FIrpic blue emitter. This performance shows that the PHC strategy represents an effective alternative for the future development of the OLED industry.
RESUMO
Macrocycles possessing radially oriented π-orbitals have experienced a fantastic development. However, their incorporation in organic electronic devices remains very scarce. In this work, we aim at bridging the gap between organic electronics and nanorings by reporting the first detailed structure-properties-device performance relationship study of organic functional materials based on a nanoring system. Three [4]cyclo-N-alkyl-2,7-carbazoles bearing different alkyl chains on their nitrogen atoms have been synthesized and characterized by combined experimental and theoretical approaches. This study includes electrochemical, photophysical, thermal, and structural solid-state measurements and charge transport properties investigations. An optimized protocol of the Pt approach has been developed to synthesize the [4]cyclocarbazoles in high yield (52-64%), of great interest for further development of nanorings, especially in materials science. The charge transport properties of [4]cyclocarbazoles and model compound [8]cycloparaphenylene ([8]CPP) have been studied. Although no field effect (FE) mobility was recorded for the benchmark [8]CPP, FE mobility values of ca. 10-5 cm2·V-1·s-1 were recorded for the [4]cyclocarbazoles. The characteristics (threshold voltage VTH, subthreshold swing SS, trapping energy ΔE) recorded for the three [4]cyclocarbazoles appear to be modulated by the alkyl chain length borne by the nitrogen atoms. Remarkably, the space-charge-limited current mobilities measured for the [4]cyclocarbazoles are about 3 orders of magnitude higher than that of [8]CPP (1.37/2.78 × 10-4 cm2·V-1·s-1 for the [4]cyclocarbazoles vs 1.21 × 10-7 cm2·V-1·s-1 for [8]CPP), highlighting the strong effect of nitrogen bridges on the charge transport properties. The whole study opens the way to the use of nanorings in electronics, which is now the next step of their development.
RESUMO
For the last ten years, ring-shaped π-conjugated macrocycles possessing radially directed π-orbitals have been subject to intense research. The electronic properties of these rings are deeply dependent on their size. However, most studies involve the flagship family of nanorings: the cyclo-para-phenylenes. We report herein the synthesis and study of the first examples of cyclofluorenes possessing five constituting fluorene units. The structural, optical and electrochemical properties were elucidated by X-ray crystallography, UV-vis absorption and fluorescence spectroscopy, and cyclic voltammetry. By comparison with a shorter analogue, we show how the electronic properties of [5]-cyclofluorenes are drastically different from those of [4]-cyclofluorenes, highlighting the key role played by the ring size in the cyclofluorene family.
RESUMO
Bridged oligophenylenes are very important organic semiconductors (OSCs) in organic electronics (OE). The fluorene unit, which is a bridged biphenyl, is the spearhead of this class of materials and has, over the last 20 years, led to fantastic breakthroughs in organic light-emitting diodes. Dihydroindenofluorenes belong to the family of bridged terphenyls and can be viewed as the fusion of a fluorene unit with an indene fragment. Dihydroindenofluorenes have also appeared as very promising building blocks for OE applications. In the dihydroindenofluorene family, there are five positional isomers, with three different phenyl linkages ( para/ meta/ ortho) and two different ring bridge arrangements ( anti/ syn). We have focused on the concept of positional isomerism. Indeed, the structural differences of the dihydroindenofluorenyl cores lead to unusual electronic properties, which our group has described since 2006, thanks to the five dispirofluorene-indenofluorene positional isomers (dihydroindenofluorenes substituted on the bridges by fluorenyl units). 6,12-Dihydroindeno[1,2- b]fluorene (the para-anti isomer) is constructed on a p-terphenyl core and possesses an anti geometry. Although this isomer has been widely investigated over the last 20 years, studies of the four other isomers remain very scarce. 11,12-Dihydroindeno[2,1- a]fluorene (the para-syn isomer) is also built on a bridged p-terphenyl core but possesses a syn geometry. This particular geometry has been advantageously used by our group to drastically tune the electronic properties, and this isomer has emerged as a promising scaffold to obtain stable blue emission arising from conformationally controllable intramolecular excimers. These preliminary studies have shown the crucial influence of the geometry on the electronic properties of the dihydroindenofluorenes. Modification of the arrangement of the phenyl linkages from para to meta provides the meta isomers, namely, 7,12-dihydroindeno[1,2- a]fluorene (the meta-anti isomer) and 5,7-dihydroindeno[2,1- b]fluorene (the meta-syn isomer). With these two regioisomers, the strong impacts of both the linkage and the geometry on the electronic properties have been particularly highlighted over the years. The last positional isomer of the family is 5,8-dihydroindeno[2,1- c]fluorene, which possesses a central o-terphenyl backbone and a syn geometry. This isomer is unique because of its ortho linkage, which induces a particular helicoidal turn of the dihydroindenofluorenyl core. Using a structure-property relationship approach, in the present Account we describe the molecular diversity of the five dispirofluorene-indenofluorene positional isomers and the consequences both in terms of their organic synthesis and electronic properties. This Account shows how positional isomerism can be a powerful tool to tune the electronic properties of OSCs.
RESUMO
The mechanism of the bicyclization reaction of a series of terphenyl-bisfluorenols into dispiro[fluorene-9,6'-indeno[1,2-b]fluorene-12',9''-fluorene] and dispiro[fluorene-9,6'-indeno[2,1-a]fluorene-12',9''-fluorene] is reported. Through a combined experimental and theoretical study, the different parameters that drive the regioselectivity of this cyclization reaction have been studied and are presented.
RESUMO
Nanorings, which are macrocycles possessing radially directed π-orbitals have shown fantastic development in the last ten years. Unravelling their unusual electronic properties has been one of the driving forces of this research field. However, and despite promising properties, their incorporation in organic electronic devices remains very scarce. In this work, we aim to contribute to bridge the gap between organic electronics and nanorings by reporting the synthesis, the structural and electronic properties and the incorporation in an organic field-effect transistor (OFET) of a cyclic tetracarbazole, namely [4]cyclo-N-ethyl-2,7-carbazole ([4]C-Et-Cbz). The structural, photophysical and electrochemical properties have been compared to those of structurally related analogues [4]cyclo-9,9-diethyl-2,7-fluorene [4]C-diEt-F (with carbon bridges) and [8]-cycloparaphenylene [8]CPP (without any bridge) in order to shed light on the impact of the bridging in nanorings. This work shows that nanorings can be used as an active layer in an OFET and provides a first benchmark in term of OFET characteristics for this type of molecules.
RESUMO
Reported here are C1-linked spiro-bifluorene dimers. A comprehensive study is carried out to analyze the electronic properties of these highly twisted structures. This work shows that the C1-position enables the design of pure hydrocarbon materials, with a high triplet energy, for hosting blue phosphors in efficient phosphorescent OLEDs (PhOLEDs). To date, this work describes the highest performance of blue PhOLEDs ever reported for pure hydrocarbons (external quantum efficiency of ca. 23 %), thus highlighting the potential of the C1-spirobifluorene scaffold in organic electronics.
RESUMO
We report the first example of a dihydrodinaphthoheptacene derivative and the mechanistic investigations of the regioselective electrophilic intramolecular cyclization reaction involved in the synthesis. The structural, electrochemical, and photophysical properties have been investigated.
RESUMO
We report the first studies on the intrinsic properties of a meta-substituted dihydroindacenodithienyl fragment and more generally the strong impact of positional isomerism on dihydroindacenodithiophene derivatives. The influence of the para and meta linkages has notably been highlighted not only for the electronic properties in solution (electrochemical properties, anodic polymerization, HOMO/LUMO energy levels, optical transitions, fluorescence spectra) but also on the physical properties in the solid state (molecular organization, crystallinity, and phase transitions). The positional isomerism hence appears to be a very efficient tool to drastically tune the properties of dihydroindacenodithiophene derivatives.
RESUMO
The present works report the first structure-property relationship study of a key class of organic semiconductors, that is, the four spirobifluorene positional isomers possessing a para-, meta- or ortho-linkage. The remarkable and surprising impact of the ring bridging and of the linkages on the electronic properties of the regioisomers has been particularly highlighted and rationalised. The impact of the ring bridging on the photophysical properties has been stressed with notably the different influence of the linkages and the bridge on the singlet and triplet excited states. The first member of a new family of spirobifluorenes substituted in the 1-position, which presents better performance in blue phosphorescent OLEDs than those of its regioisomers, is reported. These features highlight not only the great potential of 1-substituted spirobifluorenes, but also the remarkable impact of regioisomerism on electronic properties.
RESUMO
This work reports a detailed structure-property relationship study of a series of efficient host materials based on the donor-spiro-acceptor (D-spiro-A) design for green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs). The electronic and physical effects of the indoloacridine (IA) fragment connected through a spiro bridge to different acceptor units, namely, fluorene, dioxothioxanthene or diazafluorene moiety, have been investigated in depth. The resulting host materials have been easily synthesised through short, efficient, low-cost, and highly adaptable synthetic routes by using common intermediates. The dyes possess a very high triplet energy (ET ) and tuneable HOMO/LUMO levels, depending on the strength of the donor/acceptor combination. The peculiar electrochemical and optical properties of the IA moiety have been investigated though a fine comparison with their phenylacridine counterparts to study the influence of planarisation. Finally, these molecules have been incorporated as hosts in green and sky-blue PhOLEDs. For the derivative SIA-TXO2 as a host, external quantum efficiencies as high as 23 and 14 % have been obtained for green and sky-blue PhOLEDs, respectively.
RESUMO
A new electron-rich fragment, namely the quinolinophenothiazine (QPTZ) is reported. The QPTZ fragment incorporated in spiroconfigured materials leads to higher performance in blue Phosphorescent OLEDs than structurally related phenylacridine and indoloacridine based materials (increasing the HOMO energy level, modulating the spin-orbit coupling, etc.) and leads to highly efficient blue phosphorescent organic light emitting diodes, indicating the strong potential of this new molecular fragment in organic electronics.
RESUMO
New families of donor/acceptor semiconductors based on dihydroindeno[1,2-a]fluorene and dihydroindeno[2,1-b]fluorene are reported. Due to the spiro bridges, this new generation of dihydroindenofluorenes allows a spatial separation of HOMO and LUMO, which retains the high ET value of the dihydroindenofluorene backbone and excellent physical properties. This control of the electronic and physical properties has allowed a second generation of dihydroindeno[1,2-a]fluorene to be obtained with strongly enhanced performance in green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs) relative to the first generation of materials. To date, this is the highest performance ever reported for a blue PhOLED by using a dihydroindenofluorene derivative. Through this structure-property relationship study, a remarkable difference of performance between syn and anti isomers has also been highlighted. This surprising behaviour has been attributed to the different symmetry of the two molecules, and highlights the importance of the geometry profiles in the design of host materials for PhOLEDs.
RESUMO
This work reports the first structure-properties relationship study of ortho [2,1-c]-, meta [1,2-a]-, and para [1,2-b]dihydroindenofluorenes, highlighting the influence of bridge rigidification on the electronic properties. This study has made it possible to devise an extended π-conjugated molecule with both a high triplet state energy level and excellent thermal and morphological stability. As a proof of concept, dihydroindenofluorenes were used as the host in sky-blue phosphorescent organic light-emitting diodes (PhOLEDs) with high performance.
RESUMO
Since the first applications of nanohoops in organic electronics appear promising, the time has come to go deeper into their rational design in order to reach high-efficiency materials. To do so, systematic studies dealing with the incorporation of electron-rich and/or electron-poor functional units on nanohoops have to be performed. Herein, the synthesis, the electrochemical, photophysical, thermal, and structural properties of two [4]cyclo-2,7-carbazoles, [4]C-Py-Cbz, and [4]C-Pm-Cbz, possessing electron-withdrawing units on their nitrogen atoms (pyridine or pyrimidine) are reported. The synthesis of these nanohoops is first optimized and a high yield above 50% is reached. Through a structure-properties relationship study, it is shown that the substituent has a significant impact on some physicochemical properties (eg HOMO/LUMO levels) while others are kept unchanged (eg fluorescence). Incorporation in electronic devices shows that the most electrically efficient Organic Field-Effect transistors are obtained with [4]C-Py-Cbz although this compound does not present the best-organized semiconductor layer. These experimental data are finally confronted with the electronic couplings between the nanohoops determined at the DFT level and have highlighted the origin in the difference of charge transport properties. [4]C-Py-Cbz has the advantage of a more 2D-like transport character than [4]C-Pm-Cbz, which alleviates the impact of defects and structural organization.