Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Faraday Discuss ; 217(0): 361-382, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31033983

RESUMO

In solution, UV-vis spectroscopy is often used to investigate structural changes in biomolecules (e.g., nucleic acids), owing to changes in the environment of their chromophores (e.g., the nucleobases). Here we address whether action spectroscopy could achieve the same for gas-phase ions, while taking advantage of the additional spectrometric separation of complex mixtures. We systematically studied the action spectroscopy of homo-base 6-mer DNA strands (dG6, dA6, dC6, dT6) and discuss the results in light of gas-phase structures validated by ion mobility spectrometry and infrared ion spectroscopy, of electron binding energies measured by photoelectron spectroscopy, and of calculated electronic photo-absorption spectra. When UV photons interact with oligonucleotide polyanions, two main actions can take place: (1) fragmentation and (2) electron detachment. The action spectra reconstructed from fragmentation follow the absorption spectra well, and result from multiple cycles of photon absorption and internal conversion. In contrast, the action spectra reconstructed from the electron photodetachment (ePD) efficiency reveal interesting phenomena. First, ePD depends on the charge state because it depends on electron binding energies. We illustrate with the G-quadruplex [dTG4T]4 that the ePD action spectrum shifts with the charge state, pointing to possible caveats when comparing the spectra of systems having different charge densities to deduce structural parameters. Second, ePD is particularly efficient for purines but not pyrimidines. ePD thus reflects not only absorption, but also particular relaxation pathways of the electronic excited states. As these pathways lead to photo-oxidation, their investigation in model gas-phase systems may prove useful to elucidating mechanisms of photo-oxidative damage, which are linked to mutations and cancers.


Assuntos
DNA/química , DNA/isolamento & purificação , Espectroscopia Fotoeletrônica , Polímeros/química , Polímeros/isolamento & purificação , Polieletrólitos
2.
Chemphyschem ; 18(19): 2782-2790, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28762245

RESUMO

In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications.


Assuntos
Guanina/química , RNA/química , Uracila/química , Pareamento de Bases , Modelos Moleculares , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
3.
Chemistry ; 21(18): 6732-9, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25820943

RESUMO

DNA and RNA G-quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G-quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G-stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.


Assuntos
DNA/química , Quadruplex G , RNA/química , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
4.
Analyst ; 140(8): 2847-56, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25734188

RESUMO

The dramatic conformational change in zinc fingers on binding metal ions for DNA recognition makes their structure-function behaviour an attractive target to mimic in de novo designed peptides. Mass spectrometry, with its high throughput and low sample consumption provides insight into how primary amino acid sequence can encode stable tertiary fold. We present here the use of ion mobility mass spectrometry (IM-MS) coupled with molecular dynamics (MD) simulations as a rapid analytical platform to inform de novo design efforts for peptide-metal and peptide-peptide interactions. A dual peptide-based synthetic system, ZiCop based on a zinc finger peptide motif, and a coiled coil partner peptide Pp, have been investigated. Titration mass spectrometry determines the relative binding affinities of different divalent metal ions as Zn(2+) > Co(2+) ≫ Ca(2+). With collision induced dissociation (CID), we probe complex stability, and establish that peptide-metal interactions are stronger and more 'specific' than those of peptide-peptide complexes, and the anticipated hetero-dimeric complex is more stable than the two homo-dimers. Collision cross-sections (CCS) measurements by IM-MS reveal increased stability with respect to unfolding of the metal-bound peptide over its apo-form, and further, larger collision cross sections for the hetero-dimeric forms suggest that dimeric species formed in the absence of metal are coiled coil like. MD supports these structural assignments, backed up by data from visible light absorbance measurements.


Assuntos
Desenho de Fármacos , Espectrometria de Massas , Proteínas/química , Dedos de Zinco , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Dobramento de Proteína
5.
Analyst ; 140(20): 7000-11, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26369607

RESUMO

A prevalent type of protein misfolding causes the formation of ß-sheet-rich structures known as amyloid fibrils. Research into the mechanisms of fibril formation has implications for both disease prevention and nanoscale templating technologies. This investigation into the aggregation of insulin utilises ion mobility mass spectrometry coupled with molecular modelling to identify and characterise oligomers formed during the 'lag' phase that precedes fibril growth. High resolution mass spectrometry and collision induced dissociation is used to unequivocally assign species as m/z coincident multimers or confomers, providing a robust analytical approach that supports the use of molecular dynamics to atomistically resolve the observed oligomers. We show that insulin oligomerises to form species In where 2 ≤ n ≤ 12 and within this set of oligomers we delineate over 60 distinct conformations, the most dominant of which are compact species. Modelling trained with experimental data suggests that the dominant compact dimers are enriched in ß-sheet secondary structure and dominated by hydrophobic interactions, and provides a linear relationship between Rg and collision cross section. This approach provides detailed insight to the early stages of assembly of this much studied amyloidogenic protein, and can be used to inform models of nucleation and growth.


Assuntos
Insulina/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Multimerização Proteica , Animais , Bovinos , Formiatos/química , Ácido Clorídrico/química , Estrutura Secundária de Proteína
6.
Phys Chem Chem Phys ; 17(16): 10538-50, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25805055

RESUMO

Ion mobility mass spectrometry can be combined with data from top-down sequencing to discern adopted conformations of proteins in the absence of solvent. This multi-technique approach has particular applicability for conformationally dynamic systems. Previously, we demonstrated the use of drift tube ion mobility-mass spectrometry (DT IM-MS) and electron capture dissociation (ECD) to study the metamorphic protein lymphotactin (Ltn). Ltn exists in equilibrium between distinct monomeric (Ltn10) and dimeric (Ltn40) folds, both of which can be preserved and probed in the gas-phase. Here, we further test this mass spectrometric framework, by examining two site directed mutants of Ltn, designed to stabilise either distinct fold in solution, in addition to a truncated form consisting of a minimum model of structure for Ltn10. The truncated mutant has similar collision cross sections to the wild type (WT), for low charge states, and is resistant to ECD fragmentation. The monomer mutant (CC3) presents in similar conformational families as observed previously for the WT Ltn monomer. As with the WT, the CC3 mutant is resistant to ECD fragmentation at low charge states. The dimer mutant W55D is found here to exist as both a monomer and dimer. As a monomer W55D exhibits similar behaviour to the WT, but as a dimer presents a much larger charge state and collision cross section range than the WT dimer, suggesting a smaller interaction interface. In addition, ECD on the W55D mutant yields greater fragmentation than for the WT, suggesting a less stable ß-sheet core. The results highlight the power of MS to provide insight into dynamic proteins, providing further information on each distinct fold of Ltn. In addition we observe differences in the fold stability following single or double point mutations. This approach, therefore, has potential to be a useful tool to screen for the structural effects of mutagenesis, even when sample is limited.


Assuntos
Elétrons , Linfocinas/química , Espectrometria de Massas/métodos , Mutagênese Sítio-Dirigida , Mutação , Sialoglicoproteínas/química , Humanos , Linfocinas/genética , Modelos Moleculares , Conformação Proteica , Desdobramento de Proteína , Sialoglicoproteínas/genética
7.
Angew Chem Int Ed Engl ; 53(30): 7765-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24916519

RESUMO

Collision cross-sections (CCS) of immunoglobulins G1 and G4 have been determined using linear drift-tube ion-mobility mass spectrometry. Intact antibodies and Fc-hinge fragments present with a larger range of CCS than proteins of comparable size. This is rationalized with MD simulations, which indicate significant in vacuo dynamics between linked folded domains. The IgG4 subclass presents over a wider CCS range than the IgG1 subclass.


Assuntos
Imunoglobulina G/química , Espectrometria de Massas/métodos , Modelos Moleculares , Conformação Proteica
8.
J Am Chem Soc ; 134(47): 19384-92, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23106332

RESUMO

The leucine zipper interaction between MAX and c-MYC has been studied using mass spectrometry and drift time ion mobility mass spectrometry (DT IM-MS) in addition to circular dichroism spectroscopy. Peptides comprising the leucine zipper sequence with (c-MYC-Zip residues 402-434) and without a postulated small-molecule binding region (c-MYC-ZipΔDT residues 406-434) have been synthesized, along with the corresponding MAX leucine zipper (MAX-Zip residues 74-102). c-MYC-Zip:MAX-Zip complexes are observed both in the absence and in the presence of the reported small-molecule inhibitor 10058-F4 for both forms of c-MYC-Zip. DT IM-MS, in combination with molecular dynamics (MD), shows that the c-MYC-Zip:MAX-Zip complex [M+5H](5+) exists in two conformations, one extended with a collision cross section (CCS) of 1164 ± 9.3 Å(2) and one compact with a CCS of 982 ± 6.6 Å(2); similar values are observed for the two forms of c-MYC-ZipΔDT:MAX-Zip. Candidate geometries for the complexes have been evaluated with MD simulations. The helical leucine zipper structure previously determined from NMR measurements (Lavigne, P.; et al. J. Mol. Biol. 1998, 281, 165), altered to include the DT region and subjected to a gas-phase minimization, yields a CCS of 1247 Å(2), which agrees with the extended conformation we observe experimentally. More extensive MD simulations provide compact complexes which are found to be highly disordered, with CCSs that correspond to the compact form from experiment. In the presence of the ligand, the leucine zipper conformation is completely inhibited and only the more disordered species is observed, providing a novel method to study the effect of interactions of disordered systems and subsequent inhibition of the formation of an ordered helical complex.


Assuntos
Zíper de Leucina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Tiazóis/farmacologia , Dicroísmo Circular , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Peso Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Fatores de Tempo
9.
Biochem Soc Trans ; 40(5): 1021-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988858

RESUMO

The link between structure and function of a given protein is a principal tenet of biology. The established approach to understand the function of a protein is to 'solve' its structure and subsequently investigate interactions between the protein and its binding partners. However, structure determination via crystallography or NMR is challenging for proteins where localized regions or even their entire structure fail to fold into a three-dimensional form. These so called IDPs (intrinsically disordered proteins) or intrinsically disordered regions constitute up to 40% of all expressed proteins, and a much higher percentage in proteins involved in the proliferation of cancer. For these proteins, there is a need to develop new methods for structural characterization which exploit their biophysical properties. IM (ion mobility)-MS is uniquely able to examine both absolute conformation(s), populations of conformation and also conformational change, and is therefore highly applicable to the study of IDPs. The present article details the technique of IM-MS and illustrates its use in assessing the relative disorder of the wild-type p53 DNA-core-binding domain of cellular tumour antigen p53. The IM data were acquired on a Waters Synapt HDMS instrument following nESI (nanoelectrospray ionization) from 'native' and low-pH solution conditions.


Assuntos
Espectrometria de Massas , Proteína Supressora de Tumor p53/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Proteína Supressora de Tumor p53/metabolismo
10.
J Am Soc Mass Spectrom ; 31(10): 2035-2043, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32812759

RESUMO

When electrosprayed from typical native MS solution conditions, RNA hairpins and kissing complexes acquire charge states at which they get significantly more compact in the gas phase than their initial structure in solution. Here, we also show the limits of using force field molecular dynamics to interpret the structures of nucleic acid complexes in the gas phase, as the predicted CCS distributions do not fully match the experimental ones. We suggest that higher level calculation levels should be used in the future.


Assuntos
RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Bases , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
11.
J Phys Chem B ; 113(35): 12129-35, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19663401

RESUMO

Intracavity molecular dynamics studies of photodissociated carbon monoxide from ba(3)-cytochrome c oxidase have been performed by sampling the phase space with several hundreds of trajectories each integrated up to 100 ps time interval. It is shown that the cis conformation of protonated ring-D propionate of heme a(3) and its trans conformation for the deprotonated species control the CO location by creating two distinct equilibrium states for CO confined in a cavity internal to the distal heme pocket. Thus, these cis (closed gate) and trans (open gate) conformations of heme a(3) propionate D play the role of a switch, opening or closing a gate for confining CO in a cavity internal to the heme pocket or releasing it to a bigger outer cavity. The geometry of the inner cavity and the validity of the potential function employed are further investigated by Density Functional Theory calculations for the active site, potential of mean force curves along the copper-CO bond, as well as with Quantum Mechanics/Molecular Mechanics calculations. In the light of the present study, trajectory scenarios for the dissociation of CO previously suggested from time-resolved infrared spectroscopy are re-examined.


Assuntos
Monóxido de Carbono/química , Grupo dos Citocromos b/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Sítios de Ligação , Cobre/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Ligação Proteica , Prótons , Espectrofotometria/métodos , Espectrofotometria Infravermelho/métodos , Thermus thermophilus/metabolismo , Fatores de Tempo
13.
ACS Cent Sci ; 3(5): 454-461, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573208

RESUMO

We report on the fate of nucleic acids conformation in the gas phase as sampled using native mass spectrometry coupled to ion mobility spectrometry. On the basis of several successful reports for proteins and their complexes, the technique has become popular in structural biology, and the conformation survival becomes more and more taken for granted. Surprisingly, we found that DNA and RNA duplexes, at the electrospray charge states naturally obtained from native solution conditions (≥100 mM aqueous NH4OAc), are significantly more compact in the gas phase compared to the canonical solution structures. The compaction is observed for all duplex sizes (gas-phase structures are more compact than canonical B-helices by ∼20% for 12-bp, and by up to ∼30% for 36-bp duplexes), and for DNA and RNA alike. Molecular modeling (density functional calculations on small helices, semiempirical calculations on up to 12-bp, and molecular dynamics on up to 36-bp duplexes) demonstrates that the compaction is due to phosphate group self-solvation prevailing over Coulomb repulsion. Molecular dynamics simulations starting from solution structures do not reproduce the experimental compaction. To be experimentally relevant, molecular dynamics sampling should reflect the progressive structural rearrangements occurring during desolvation. For nucleic acid duplexes, the compaction observed for low charge states results from novel phosphate-phosphate hydrogen bonds formed across both grooves at the very late stages of electrospray.

14.
Structure ; 25(5): 730-738.e4, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28392260

RESUMO

MtATP-phosphoribosyltransferase (MtATP-PRT) is an enzyme catalyzing the first step of the biosynthesis of L-histidine in Mycobacterium tuberculosis, and proposed to be regulated via an allosteric mechanism. Native mass spectrometry (MS) reveals MtATP-PRT to exist as a hexamer. Conformational changes induced by L-histidine binding and the influence of buffer pH are determined with ion mobility MS, hydrogen deuterium exchange (HDX) MS, and analytical ultracentrifugation. The experimental collision cross-section (DTCCSHe) decreases from 76.6 to 73.5 nm2 upon ligand binding at pH 6.8, which correlates to the decrease in CCS calculated from crystal structures. No such changes in conformation were found at pH 9.0. Further detail on the regions that exhibit conformational change on L-histidine binding is obtained with HDX-MS experiments. On incubation with L-histidine, rapid changes are observed within domain III, and around the active site at longer times, indicating an allosteric effect.


Assuntos
ATP Fosforribosiltransferase/química , Sítio Alostérico , Proteínas de Bactérias/química , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Retroalimentação Fisiológica , Histidina/química , Histidina/metabolismo , Espectrometria de Massas/métodos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica
15.
J Mass Spectrom ; 50(5): 711-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26259654

RESUMO

Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.


Assuntos
Íons/química , Espectrometria de Massas/métodos , Modelos Moleculares , Ácidos Nucleicos/química , Simulação por Computador , Gases , Íons/análise , Ácidos Nucleicos/análise
16.
J Phys Chem B ; 118(43): 12348-59, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25259958

RESUMO

A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the ß-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of ß-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.


Assuntos
Linfocinas/química , Simulação de Dinâmica Molecular , Sialoglicoproteínas/química , Dissulfetos/química , Gases/química , Humanos , Ligação de Hidrogênio , Espectrometria de Massas , Fragmentos de Peptídeos/química , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
17.
J Phys Chem Lett ; 4(8): 1233-8, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282135

RESUMO

Amyloid fibrils are self-assembled aggregates of polypeptides that are implicated in the development of several human diseases. A peptide derived from amino acids 105-115 of the human plasma protein transthyretin forms homogeneous and well-defined fibrils and, as a model system, has been the focus of a number of studies investigating the formation and structure of this class of aggregates. Self-assembly of TTR(105-115) occurs at low pH, and this work explores the effect of protonation on the growth and stability of small cross-ß aggregates. Using molecular dynamics simulations of structures up to the decamer in both protonated and deprotonated states, we find that, whereas hexamers are more stable for protonated peptides, higher order oligomers are more stable when the peptides are deprotonated. Our findings imply a change in the acid pK of the protonated C-terminal group during the formation of fibrils, which leads to stabilization of higher-order oligomers through electrostatic interactions.

18.
Chem Commun (Camb) ; 47(1): 412-4, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852793

RESUMO

Solution-phase spectroscopy and mass spectrometry are used to probe interactions between divalent metal ions and a synthetic Cys(2)His(2) zinc-finger peptide (vCP1). Both methods provide the same order of binding affinity, zinc ≥ cobalt ≫ copper ≫ calcium. Collision-cross-section measurements show that both apo and holo forms are compact. This is corroborated by molecular-dynamics simulations.


Assuntos
Cálcio/química , Cobalto/química , Cobre/química , Peptídeos/química , Dedos de Zinco , Zinco/química , Cisteína/química , Gases/química , Histidina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA