Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Rep ; 42(4): 112297, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36961816

RESUMO

Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer. Our approach includes genome-wide CRISPR screens with or without drugs targeting the oncogenic driver ("anchor therapy"), and large-scale pairwise combination screens of anchor therapies with 351 other drugs. Interestingly, targeting of a small number of genes, including MCL1, BCL2L1, and YAP1, sensitizes multiple cell lines to the respective anchor therapy. Data from drug combination screens with EGF816 and ceritinib indicate that dasatinib and agents disrupting microtubules act synergistically across many cell lines. Finally, we show that a higher-order-combination screen with 26 selected drugs in two resistant EGFR-mutant lung cancer cell lines identified active triplet combinations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Receptores Proteína Tirosina Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Linhagem Celular Tumoral
2.
Cancer Cell ; 5(3): 231-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15050915

RESUMO

IGF-IR-mediated signaling promotes survival, anchorage-independent growth, and oncogenic transformation, as well as tumor growth and metastasis formation in vivo. NVP-AEW541 is a pyrrolo[2,3-d]pyrimidine derivative small molecular weight kinase inhibitor of the IGF-IR, capable of distinguishing between the IGF-IR (IC50 = 0.086 microM) and the closely related InsR (IC50 = 2.3 microM) in cells. As expected for a specific IGF-IR kinase inhibitor, NVP-AEW541 abrogates IGF-I-mediated survival and colony formation in soft agar at concentrations that are consistent with inhibition of IGF-IR autophosphorylation. In vivo, this orally bioavailable compound inhibits IGF-IR signaling in tumor xenografts and significantly reduces the growth of IGF-IR-driven fibrosarcomas. Thus, NVP-AEW541 represents a class of selective, small molecule IGF-IR kinase inhibitors with proven in vivo antitumor activity and potential therapeutic application.


Assuntos
Antineoplásicos/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Divisão Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo
3.
Clin Pharmacol Ther ; 112(6): 1329-1339, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131557

RESUMO

Model-informed dose selection has been drawing increasing interest in oncology early clinical development. The current paper describes the example of FGF401, a selective fibroblast growth factor receptor 4 (FGFR4) inhibitor, in which a comprehensive modeling and simulation (M&S) framework, using both pharmacometrics and statistical methods, was established during its first-in-human clinical development using the totality of pharmacokinetics (PK), pharmacodynamic (PD) biomarkers, and safety and efficacy data in patients with cancer. These M&S results were used to inform FGF401 dose selection for future development. A two-compartment population PK (PopPK) model with a delayed 0-order absorption and linear elimination adequately described FGF401 PK. Indirect PopPK/PD models including a precursor compartment were independently established for two biomarkers: circulating FGF19 and 7α-hydroxy-4-cholesten-3-one (C4). Model simulations indicated a close-to-maximal PD effect achieved at the clinical exposure range. Time-to-progression was analyzed by Kaplan-Meier method which favored a trough concentration (Ctrough )-driven efficacy requiring Ctrough above a threshold close to the drug concentration producing 90% inhibition of phospho-FGFR4. Clinical tumor growth inhibition was described by a PopPK/PD model that reproduced the dose-dependent effect on tumor growth. Exposure-safety analyses on the expected on-target adverse events, including elevation of aspartate aminotransferase and diarrhea, indicated a lack of clinically relevant relationship with FGF401 exposure. Simulations from an indirect PopPK/PD model established for alanine aminotransferase, including a chain of three precursor compartments, further supported that maximal target inhibition was achieved and there was a lack of safety-exposure relationship. This M&S framework supported a dose selection of 120 mg once daily fasted or with a low-fat meal and provides a practical example that might be applied broadly in oncology early clinical development.


Assuntos
Piperazinas , Piridinas , Humanos , Piperazinas/farmacologia , Simulação por Computador , Alanina Transaminase , Modelos Biológicos , Relação Dose-Resposta a Droga
4.
J Exp Clin Cancer Res ; 41(1): 189, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655320

RESUMO

BACKGROUND: Deregulation of FGF19-FGFR4 signaling is found in several cancers, including hepatocellular carcinoma (HCC), nominating it for therapeutic targeting. FGF401 is a potent, selective FGFR4 inhibitor with antitumor activity in preclinical models. This study was designed to determine the recommended phase 2 dose (RP2D), characterize PK/PD, and evaluate the safety and efficacy of FGF401 alone and combined with the anti-PD-1 antibody, spartalizumab. METHODS: Patients with HCC or other FGFR4/KLB expressing tumors were enrolled. Dose-escalation was guided by a Bayesian model. Phase 2 dose-expansion enrolled patients with HCC from Asian countries (group1), non-Asian countries (group2), and patients with other solid tumors expressing FGFR4 and KLB (group3). FGF401 and spartalizumab combination was evaluated in patients with HCC. RESULTS: Seventy-four patients were treated in the phase I with single-agent FGF401 at 50 to 150 mg. FGF401 displayed favorable PK characteristics and no food effect when dosed with low-fat meals. The RP2D was established as 120 mg qd. Six of 70 patients experienced grade 3 dose-limiting toxicities: increase in transaminases (n = 4) or blood bilirubin (n = 2). In phase 2, 30 patients in group 1, 36 in group 2, and 20 in group 3 received FGF401. In total, 8 patients experienced objective responses (1 CR, 7 PR; 4 each in phase I and phase II, respectively). Frequent adverse events (AEs) were diarrhea (73.8%), increased AST (47.5%), and ALT (43.8%). Increase in levels of C4, total bile acid, and circulating FGF19, confirmed effective FGFR4 inhibition. Twelve patients received FGF401 plus spartalizumab. RP2D was established as FGF401 120 mg qd and spartalizumab 300 mg Q3W; 2 patients reported PR. CONCLUSIONS: At biologically active doses, FGF401 alone or combined with spartalizumab was safe in patients with FGFR4/KLB-positive tumors including HCC. Preliminary clinical efficacy was observed. Further clinical evaluation of FGF401 using a refined biomarker strategy is warranted. TRIAL REGISTRATION: NCT02325739 .


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos Monoclonais Humanizados , Teorema de Bayes , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas , Piridinas
5.
Exp Mol Med ; 52(11): 1857-1868, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33235319

RESUMO

Hepatocellular carcinoma (HCC) is a lethal cancer with limited therapeutic options, and standard therapy with sorafenib provides only modest survival benefits. Fibroblast growth factor 19 (FGF19) has been proposed as a driver oncogene, and targeting its receptor, FGFR-4, may provide a better alternative to standard therapy for patients with FGF19-driven tumors. Sixty-three HCC patient-derived xenograft (PDX) models were screened for FGF19 expression. Mice bearing high and low FGF19-expressing tumors were treated with FGF401 and/or vinorelbine, and the antitumor activity of both agents was assessed individually and in combination. Tumor vasculature and intratumoral hypoxia were also examined. High FGF19 expression was detected in 14.3% (9 of 63) of the HCC models tested and may represent a good target for HCC treatment. FGF401 potently inhibited the growth of high FGF19-expressing HCC models regardless of FGF19 gene amplification. Furthermore, FGF401 inhibited the FGF19/FGFR-4 signaling pathway, cell proliferation, and hypoxia, induced apoptosis and blood vessel normalization and prolonged the overall survival (OS) of mice bearing high FGF19 tumors. FGF401 synergistically acted with the microtubule-depolymerizing drug vinorelbine to further suppress tumor growth, promote apoptosis, and prolong the OS of mice bearing high FGF19 tumors, with no evidence of increased toxicity. Our study suggests that a subset of patients with high FGF19-expressing HCC tumors could benefit from FGF401 or FGF401/vinorelbine treatment. A high level of FGF19 in a tumor may serve as a potential biomarker for patient selection.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Vinorelbina/farmacologia , Animais , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Discov ; 7(3): 252-263, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28034880

RESUMO

Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Fenilureia/uso terapêutico , Pirimidinas/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , DNA Tumoral Circulante/genética , Feminino , Fusão Gênica , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição TFIIIA/genética
7.
PLoS One ; 8(1): e51671, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300950

RESUMO

Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Antígeno CD24/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Microscopia de Fluorescência , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
8.
Clin Cancer Res ; 19(13): 3693-702, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23658459

RESUMO

PURPOSE: Fibroblast growth factor receptor 1 (FGFR1) and FGFR2 amplifications are observed in approximately 10% of breast cancers and are related to poor outcomes. We evaluated whether dovitinib (TKI258), an inhibitor of FGFR1, FGFR2, and FGFR3, presented antitumor activity in FGFR-amplified breast cancers. EXPERIMENTAL DESIGN: Preclinical activity of dovitinib was evaluated in both breast cancer cell lines and an FGFR1-amplified xenograft model (HBCx2). Dovitinib was then evaluated in a phase II trial that included 4 groups of patients with human EGF receptor 2-negative metastatic breast cancer on the basis of FGFR1 amplification and hormone receptor (HR) status. FGFR1 amplification was assessed by silver in situ hybridization. Preplanned retrospective analyses assessed predictive value of FGFR1, FGFR2, and FGF3 amplifications by quantitative PCR (qPCR). RESULTS: Dovitinib monotherapy inhibits proliferation in FGFR1- and FGFR2-amplified, but not FGFR-normal, breast cancer cell lines. Dovitinib also inhibits tumor growth in FGFR1-amplified breast cancer xenografts. Eighty-one patients were enrolled in the trial. Unconfirmed response or stable disease for more than 6 months was observed in 5 (25%) and 1 (3%) patient(s) with FGFR1-amplified/HR-positive and FGFR1-nonamplified/HR-positive breast cancer. When qPCR-identified amplifications in FGFR1, FGFR2, or FGF3 were grouped to define an FGF pathway-amplified breast cancer in HR-positive patients, the mean reduction in target lesions was 21.1% compared with a 12.0% increase in patients who did not present with FGF pathway-amplified breast cancer. CONCLUSION: Dovitinib showed antitumor activity in FGFR-amplified breast cancer cell lines and may have activity in breast cancers with FGF pathway amplification.


Assuntos
Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinolonas/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Fator 3 de Crescimento de Fibroblastos/genética , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Amplificação de Genes , Humanos , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Quinolonas/efeitos adversos , Quinolonas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 12(5): 632-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23443805

RESUMO

The recent identification of activating fibroblast growth factor receptor 2 (FGFR2) mutations in endometrial cancer has generated an opportunity for a novel target-based therapy. Here, we explore the therapeutic potential of 2 FGFR inhibitors, the multikinase inhibitor dovitinib (TKI258) and the more selective FGFR inhibitor NVP-BGJ398 for the treatment of endometrial cancer. We examined the effects of both inhibitors on tumor cell growth, FGFR2 signaling, cell cycle, and apoptosis using a panel of 20 molecularly characterized human endometrial cancer cell lines. Anchorage-independent growth was studied using soft agar assays. In vivo studies were conducted using endometrial cancer xenograft models. Cell lines with activating FGFR2 mutations (S252W, N550K) were more sensitive to dovitinib or NVP-BGJ398 when compared with their FGFR2 wild-type counterparts (P = 0.073 and P = 0.021, respectively). Both agents inhibited FGFR2 signaling, induced cell-cycle arrest, and significantly increased apoptosis in FGFR2-mutant lines. In vitro, dovitinib and NVP-BGJ398 were both potent at inhibiting cell growth of FGFR2-mutant endometrial cancer cells, but the activity of dovitinib was less restricted to FGFR2-mutant lines when compared with NVP-BGJ398. In vivo, dovitinib and NVP-BGJ398 significantly inhibited the growth of FGFR2-mutated endometrial cancer xenograft models. In addition, dovitinib showed significant antitumor activity in FGFR2 wild-type endometrial cancer xenograft models including complete tumor regressions in a long-term in vivo study. Dovitinib and NVP-BGJ398 warrant further clinical evaluation in patients with FGFR2-mutated endometrial cancer. Dovitinib may have antitumor activity in endometrial cancer beyond FGFR2-mutated cases and may permit greater flexibility in patient selection.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias do Endométrio/metabolismo , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzimidazóis/administração & dosagem , Benzimidazóis/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mutação , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Quinolonas/administração & dosagem , Quinolonas/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA