Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724566

RESUMO

Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.

2.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356496

RESUMO

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo
3.
Proteomics ; 23(3-4): e2100369, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36094355

RESUMO

BACKGROUND: Mass spectrometry (MS)-based proteomic analysis of posttranslational modifications (PTMs) usually requires the pre-enrichment of modified proteins or peptides. However, recent ultra-deep whole proteome profiling generates millions of spectra in a single experiment, leaving many unassigned spectra, some of which may be derived from PTM peptides. METHODS: Here we present JUMPptm, an integrative computational pipeline, to extract PTMs from unenriched whole proteome. JUMPptm combines the advantages of JUMP, MSFragger and Comet search engines, and includes de novo tags, customized database search and peptide filtering, which iteratively analyzes each PTM by a multi-stage strategy to improve sensitivity and specificity. RESULTS: We applied JUMPptm to the deep brain proteome of Alzheimer's disease (AD), and identified 34,954 unique peptides with phosphorylation, methylation, acetylation, ubiquitination, and others. The phosphorylated peptides were validated by enriched phosphoproteome from the same sample. TMT-based quantification revealed 482 PTM peptides dysregulated at different stages during AD progression. For example, the acetylation of numerous mitochondrial proteins is significantly decreased in AD. A total of 60 PTM sites are found in the pan-PTM map of the Tau protein. CONCLUSION: The JUMPptm program is an effective tool for pan-PTM analysis and the resulting AD pan-PTM profile serves as a valuable resource for AD research.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Software , Peptídeos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(17): 9302-9310, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32245809

RESUMO

Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.


Assuntos
Lignina/metabolismo , Pseudomonas putida/enzimologia , Vesículas Secretórias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas putida/metabolismo
5.
Proteomics ; 22(19-20): e2100243, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723178

RESUMO

Tandem mass tag (TMT) mass spectrometry is a mainstream isobaric chemical labeling strategy for profiling proteomes. Here we present a 29-plex TMT method to combine the 11-plex and 18-plex labeling strategies. The 29-plex method was examined with a pooled sample composed of 1×, 3×, and 10× Escherichia coli peptides with 100× human background peptides, which generated two E. coli datasets (TMT11 and TMT18), displaying the distorted ratios of 1.0:1.7:4.2 and 1.0:1.8:4.9, respectively. This ratio compression from the expected 1:3:10 ratios was caused by co-isolated TMT-labeled ions (i.e., noise). Interestingly, the mixture of two TMT sets produced MS/MS spectra with unique features for the noise detection: (i) in TMT11-labeled spectra, TMT18-specific reporter ions (e.g., 135N) were shown as the noise; (ii) in TMT18-labeled spectra, the TMT11/TMT18-shared reporter ions (e.g., 131C) typically exhibited higher intensities than TMT18-specific reporter ions, due to contaminated TMT11-labeled ions in these shared channels. We further estimated the noise levels contributed by both TMT11- and TMT18-labeled peptides, and corrected reporter ion intensities in every spectrum. Finally, the anticipated 1:3:10 ratios were largely restored. This strategy was also validated using another 29-plex sample with 1:5 ratios. Thus the 29-plex method expands the TMT throughput and enhances the quantitative accuracy.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Proteômica/métodos , Escherichia coli , Peptídeos/análise , Íons
6.
Anal Chem ; 94(13): 5325-5334, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315655

RESUMO

Proteome profiling is a powerful tool in biological and biomedical studies, starting with samples at bulk, single-cell, or single-cell-type levels. Reliable methods for extracting specific cell-type proteomes are in need, especially for the cells (e.g., neurons) that cannot be readily isolated. Here, we present an innovative proximity labeling (PL) strategy for single-cell-type proteomics of mouse brain, in which TurboID (an engineered biotin ligase) is used to label almost all proteins in a specific cell type. This strategy bypasses the requirement of cell isolation and includes five major steps: (i) constructing recombinant adeno-associated viruses (AAVs) to express TurboID driven by cell-type-specific promoters, (ii) delivering the AAV to mouse brains by direct intravenous injection, (iii) enhancing PL labeling by biotin administration, (iv) purifying biotinylated proteins, followed by on-bead protein digestion, and (v) quantitative tandem-mass-tag (TMT) labeling. We first confirmed that TurboID can label a wide range of cellular proteins in human HEK293 cells and optimized the single-cell-type proteomic pipeline. To analyze specific brain cell types, we generated recombinant AAVs to coexpress TurboID and mCherry proteins, driven by neuron- or astrocyte-specific promoters and validated the expected cell expression by coimmunostaining of mCherry and cellular markers. Subsequent biotin purification and TMT analysis identified ∼10,000 unique proteins from a few micrograms of protein samples with excellent reproducibility. Comparative and statistical analyses indicated that these PL proteomes contain cell-type-specific cellular pathways. Although PL was originally developed for studying protein-protein interactions and subcellular proteomes, we extended it to efficiently tag the entire proteomes of specific cell types in the mouse brain using TurboID biotin ligase. This simple, effective in vivo approach should be broadly applicable to single-cell-type proteomics.


Assuntos
Proteoma , Proteômica , Animais , Biotinilação , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
7.
Plant J ; 103(2): 869-888, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314451

RESUMO

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water-use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water-limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large-scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell-enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2 , stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue-specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability.


Assuntos
Metabolismo Ácido das Crassuláceas , Kalanchoe/metabolismo , Células do Mesofilo/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Especificidade de Órgãos , Fotossíntese , Proteoma/metabolismo
8.
J Lipid Res ; 61(11): 1450-1463, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32661017

RESUMO

Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Mol Plant Microbe Interact ; 33(10): 1177-1188, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597696

RESUMO

Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.


Assuntos
Laccaria/fisiologia , Peptídeos/química , Populus/química , Populus/microbiologia , Proteólise , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Análise de Sequência de Proteína
10.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986379

RESUMO

The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tapirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii, the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/química , Firmicutes/genética , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Panicum/química , Populus/química , Firmicutes/metabolismo
11.
Funct Integr Genomics ; 15(2): 141-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25722247

RESUMO

Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.


Assuntos
Genoma Bacteriano , Bactérias/classificação , Proteínas de Bactérias/genética , Códon , Variação Genética , Tamanho do Genoma , Genômica , Metagenômica , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
12.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798680

RESUMO

T cell exhaustion is linked to persistent antigen exposure and perturbed activation events, correlating with poor disease prognosis. Tumor-mediated T cell exhaustion is well documented; however, how the nutrient-deprived tumor niche affects T cell receptor (TCR) activation is largely unclear. We show that methionine metabolism licenses optimal TCR signaling by regulating the protein arginine methylome, and limiting methionine availability during early TCR signaling promotes subsequent T cell exhaustion. We discovered a novel arginine methylation of a Ca 2+ -activated potassium transporter, KCa3.1, prevention of which results in increased Ca 2+ -mediated NFAT1 activation, NFAT1 promoter occupancy, and T cell exhaustion. Furthermore, methionine supplementation reduces nuclear NFAT1 in tumor-infiltrating T cells and augments their anti-tumor activity. These findings demonstrate metabolic regulation of T cell exhaustion determined during TCR engagement.

13.
Res Sq ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260279

RESUMO

Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We found 2,933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n=148) or the alternatively spliced (AS) isoform (n=9) level. Expression of selected AS targets, including the EDB domain of FN1 (EDB), and gene targets, such as COL11A1, were validated in pediatric PDX tumors. We generated CAR T cells specific to EDB or COL11A1 and demonstrated that COL11A1-CAR T-cells have potent antitumor activity. The full target list, explorable via an interactive web portal (https://cseminer.stjude.org/), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.

14.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702309

RESUMO

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Assuntos
Neoplasias Encefálicas , Éxons , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Éxons/genética , Criança , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Imunoterapia/métodos , Processamento Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , RNA-Seq , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
15.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963875

RESUMO

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Assuntos
Peroxissomos , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Transporte Proteico/fisiologia , Peroxissomos/metabolismo , Membranas Intracelulares/metabolismo
16.
Nat Commun ; 13(1): 3870, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790765

RESUMO

Economically viable production of cellulosic biofuels requires operation at high solids loadings-on the order of 15 wt%. To this end we characterize Nature's ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are ß-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes-all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.


Assuntos
Lignina , Microbiota , Anaerobiose , Carboidratos , Lignina/metabolismo
17.
ISME J ; 16(7): 1740-1749, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338334

RESUMO

Soil microbiomes harbour unparalleled functional and phylogenetic diversity. However, extracting isolates with a targeted function from complex microbiomes is not straightforward, particularly if the associated phenotype does not lend itself to high-throughput screening. Here, we tackle the methylation of arsenic (As) in anoxic soils. As methylation was proposed to be catalysed by sulfate-reducing bacteria. However, to date, there are no available anaerobic isolates capable of As methylation, whether sulfate-reducing or otherwise. The isolation of such a microorganism has been thwarted by the fact that the anaerobic bacteria harbouring a functional arsenite S-adenosylmethionine methyltransferase (ArsM) tested to date did not methylate As in pure culture. Additionally, fortuitous As methylation can result from the release of non-specific methyltransferases upon lysis. Thus, we combined metagenomics, metatranscriptomics, and metaproteomics to identify the microorganisms actively methylating As in anoxic soil-derived microbial cultures. Based on the metagenome-assembled genomes of microorganisms expressing ArsM, we isolated Paraclostridium sp. strain EML, which was confirmed to actively methylate As anaerobically. This work is an example of the application of meta-omics to the isolation of elusive microorganisms.


Assuntos
Arsênio , Anaerobiose , Bactérias Anaeróbias/genética , Filogenia , Solo , Sulfatos
18.
ISME Commun ; 2(1): 66, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938724

RESUMO

There are known associations between opioids, obesity, and the gut microbiome, but the molecular connection/mediation of these relationships is not understood. To better clarify the interplay of physiological, genetic, and microbial factors, this study investigated the microbiome and host inflammatory responses to chronic opioid administration in genetically obese, diet-induced obese, and lean mice. Samples of feces, urine, colon tissue, and plasma were analyzed using targeted LC-MS/MS quantification of metabolites, immunoassays of inflammatory cytokine levels, genome-resolved metagenomics, and metaproteomics. Genetic obesity, diet-induced obesity, and morphine treatment in lean mice each showed increases in distinct inflammatory cytokines. Metagenomic assembly and binning uncovered over 400 novel gut bacterial genomes and species. Morphine administration impacted the microbiome's composition and function, with the strongest effect observed in lean mice. This microbiome effect was less pronounced than either diet or genetically driven obesity. Based on inferred microbial physiology from the metaproteome datasets, a high-fat diet transitioned constituent microbes away from harvesting diet-derived nutrients and towards nutrients present in the host mucosal layer. Considered together, these results identified novel host-dependent phenotypes, differentiated the effects of genetic obesity versus diet induced obesity on gut microbiome composition and function, and showed that chronic morphine administration altered the gut microbiome.

19.
Nat Aging ; 2(10): 923-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36636325

RESUMO

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genética
20.
Biotechnol Biofuels ; 14(1): 24, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461608

RESUMO

BACKGROUND: The cellulolytic thermophile Clostridium thermocellum is an important biocatalyst due to its ability to solubilize lignocellulosic feedstocks without the need for pretreatment or exogenous enzyme addition. At low concentrations of substrate, C. thermocellum can solubilize corn fiber > 95% in 5 days, but solubilization declines markedly at substrate concentrations higher than 20 g/L. This differs for model cellulose like Avicel, on which the maximum solubilization rate increases in proportion to substrate concentration. The goal of this study was to examine fermentation at increasing corn fiber concentrations and investigate possible reasons for declining performance. RESULTS: The rate of growth of C. thermocellum on corn fiber, inferred from CipA scaffoldin levels measured by LC-MS/MS, showed very little increase with increasing solids loading. To test for inhibition, we evaluated the effects of spent broth on growth and cellulase activity. The liquids remaining after corn fiber fermentation were found to be strongly inhibitory to growth on cellobiose, a substrate that does not require cellulose hydrolysis. Additionally, the hydrolytic activity of C. thermocellum cellulase was also reduced to less-than half by adding spent broth. Noting that > 15 g/L hemicellulose oligosaccharides accumulated in the spent broth of a 40 g/L corn fiber fermentation, we tested the effect of various model carbohydrates on growth on cellobiose and Avicel. Some compounds like xylooligosaccharides caused a decline in cellulolytic activity and a reduction in the maximum solubilization rate on Avicel. However, there were no relevant model compounds that could replicate the strong inhibition by spent broth on C. thermocellum growth on cellobiose. Cocultures of C. thermocellum with hemicellulose-consuming partners-Herbinix spp. strain LL1355 and Thermoanaerobacterium thermosaccharolyticum-exhibited lower levels of unfermented hemicellulose hydrolysis products, a doubling of the maximum solubilization rate, and final solubilization increased from 67 to 93%. CONCLUSIONS: This study documents inhibition of C. thermocellum with increasing corn fiber concentration and demonstrates inhibition of cellulase activity by xylooligosaccharides, but further work is needed to understand why growth on cellobiose was inhibited by corn fiber fermentation broth. Our results support the importance of hemicellulose-utilizing coculture partners to augment C. thermocellum in the fermentation of lignocellulosic feedstocks at high solids loading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA