Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Arthroplasty ; 39(2): 507-513.e1, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598779

RESUMO

BACKGROUND: There is no standard method for assembling the femoral head onto the femoral stem during total hip arthroplasty (THA). This study aimed to measure and record dynamic 3-dimensional (3D) THA head-neck assembly loads from residents, fellows, and attending surgeons, for metal and ceramic femoral heads. METHODS: An instrumented apparatus measured dynamic 3D forces applied through the femoral stem taper in vitro for 31 surgeons (11 attendings, 14 residents, 6 fellows) using their preferred technique (ie, number of hits or mallet strikes). Outcome variables included peak axial force, peak resultant force, impulse of the resultant force, loading rate of the resultant force, and off-axis angle. They were compared between femoral head material, surgeon experience level, and the number of hits per trial. RESULTS: Average peak axial force was 6.92 ± 2.11kN for all surgeons. No significant differences were found between femoral head material. Attendings applied forces more "on-axis" as compared to both residents and fellows. Nine surgeons assembled the head with 1 hit, 3 with 2 hits, 14 with 3 hits, 2 with 4 hits, and 3 with ≥5 hits. The first hit of multihit trials was significantly lower than single-hit trials for all outcome measures except the off-axis angle. The last hit of multihit trials had a significantly lower impulse of resultant force than single-hit trials. CONCLUSION: Differences in applied 3D force-time curve dynamic characteristics were found between surgeon experience level and single and multihit trials. No significant differences were found between femoral head material.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Cirurgiões , Humanos , Cabeça do Fêmur/cirurgia , Desenho de Prótese , Falha de Prótese
2.
J Arthroplasty ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640966

RESUMO

BACKGROUND: Modular dual mobility (DM) bearings have a junction between a cobalt chrome alloy (CoCrMo) liner and titanium shell, and the risk of tribocorrosion at this interface remains a concern. The purpose of this study was to determine whether liner malseating and liner designs are associated with taper tribocorrosion. METHODS: We evaluated 28 retrieved modular DM implants with a mean in situ duration of 14.6 months (range, 1 to 83). There were 2 manufacturers included (12 and 16 liners, respectively). Liners were considered malseated if a distinct divergence between the liner and shell was present on postoperative radiographs. Tribocorrosion was analyzed qualitatively with the modified Goldberg Score and quantitatively with an optical coordinate-measuring machine. An acetabular shell per manufacturer was sectioned for metallographic analysis. RESULTS: There were 6 implants (22%) that had severe grade 4 corrosion, 6 (22%) had moderate grade 3, 11 (41%) had mild grade 2, and 5 (18.5%) had grade 1 or no visible corrosion. The average volumetric material loss at the taper was 0.086 ± 0.19 mm3. There were 7 liners (25%) that had radiographic evidence of malseating, and all were of a single design (P = .01). The 2 liner designs were fundamentally different from one another with respect to the cobalt chrome alloy type, taper surface finish, and shape deviations. Malseating was an independent risk factor for increased volumetric material loss (P = .017). CONCLUSIONS: DM tribocorrosion with quantifiable material loss occurred more commonly in malseated liners. Specific design characteristics may make liners more prone to malseating, and the interplay between seating mechanics, liner characteristics, and patient factors likely contributes to the shell/liner tribocorrosion environment. LEVEL OF EVIDENCE: Level III.

3.
J Arthroplasty ; 38(7S): S280-S284, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028774

RESUMO

BACKGROUND: Total hip arthroplasty (THA) failure due to tribocorrosion of modular junctions and resulting adverse local tissue reactions to corrosion debris have seemingly increased over the past few decades. Recent studies have found that chemically-induced column damage seen on the inner head taper is enabled by banding in the alloy microstructure of wrought cobalt-chromium-molybdenum alloy femoral heads, and is associated with more material loss than other tribocorrosion processes. It is unclear if alloy banding represents a recent phenomenon. The purpose of this study was to examine THAs implanted in the 1990s, 2000s, and 2010s to determine if alloy microstructure and implant susceptibility to severe damage has increased over time. METHODS: Five hundred and forty-five modular heads were assessed for damage severity and grouped based on decade of implantation to serve as a proxy measure for manufacturing date. A subset of heads (n = 120) was then processed for metallographic analysis to visualize alloy banding. RESULTS: We found that damage score distribution was consistent over the time periods, but the incidence of column damage significantly increased between the 1990s and 2000s. Banding also increased from the 1990s to 2000s, but both column damage and banding levels appear to recover slightly in the 2010s. CONCLUSION: Banding, which provides preferential corrosion sites enabling column damage, has increased over the last 3 decades. No difference between manufacturers was seen, which may be explained by shared suppliers of bar stock material. These findings are important as banding can be avoidable, reducing the risk of severe column damage to THA modular junctions and failure due to adverse local tissue reactions.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Prótese de Quadril/efeitos adversos , Vitálio , Ligas de Cromo/química , Artroplastia de Quadril/efeitos adversos , Cabeça do Fêmur/cirurgia , Corrosão , Falha de Prótese , Desenho de Prótese , Cobalto
4.
J Oral Maxillofac Surg ; 80(5): 798-813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157828

RESUMO

PURPOSE: Metallic temporomandibular joint replacement (TMJR) systems vary depending on design, material composition, and manufacturing methods such as casting, forging, and additive manufacturing. Therefore, the purpose of this study was to measure the association between manufacturing process of TMJR systems in terms of microstructure and electrochemical properties. MATERIALS AND METHODS: The sample was composed of new or surgically retrieved TMJ replacement devices of either titanium alloy (Ti6Al4V) or cobalt-chromium-molybdenum (CoCrMo) alloy from 8 different manufacturers. The primary predictor variable was alloy type, according to its manufacturing process (wrought, cast, additively manufactured [AM]). The primary outcome variables were 1) microstructure (grain size, aspect ratio, and phase content) and 2) corrosion potential and current, polarization resistance, and capacitance. Differences between alloy groups were determined by t tests, Kruskal-Wallis, and Mann-Whitney tests. RESULTS: We demonstrated that the TMJR CoCrMo and Ti6Al4V alloy microstructures can vary broadly within American Society for Testing and Materials specifications, where the components made of Ti6Al4V had 3 types of microstructures (equiaxial, bimodal, and martensitic) out of 10 samples, and the components made of CoCrMo had 2 types of microstructure (equiaxial and dendritic) out of 16 samples. Some CoCrMo alloys exhibited preferential corrosion sites, while wrought Ti6Al4V alloys trended toward a superior corrosion behavior (corrosion rate: 2 × 10-9 A/cm2, polarization resistance: 5,000,000 kΩcm2, and capacitance: 10 µSsa/cm2) compared with AM alloys (39 × 10-9 A/cm2, 1676 kΩcm2, 36 µSsa/cm2, respectively), where 4 samples of each group were tested and repeated 5 times. Among four AM devices, two exhibited a significantly inferior corrosion behavior. CONCLUSIONS: Although AM is an exciting emerging new technology that allows manufacturing of custom-made TMJR, their corrosion behavior is still inferior in comparison to that of traditional wrought alloys. Preventing corrosion is crucial because it can cause surface defects that may lead to implant fracture.


Assuntos
Ligas , Prótese Articular , Ligas/química , Animais , Corrosão , Humanos , Teste de Materiais , Camundongos , Propriedades de Superfície , Articulação Temporomandibular/cirurgia
5.
J Oral Maxillofac Surg ; 80(12): 1878-1892, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174661

RESUMO

PURPOSE: Heterotopic ossification (HO) formed over the major components and fixation screw heads of an alloplastic temporomandibular joint replacement (TMJR) prosthesis can result in decreased quality of life, limited function, prosthesis failure, and hinder prosthesis revision, replacement, or removal. This study simulated HO removal from the major components and fixation screw heads of alloplastic TMJR prostheses using an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser and compared the results to conventional methods of HO removal. The surface morphology and chemical structure of the exposed components were analyzed. The investigators hypothesize that HO removal with an Er,Cr:YSGG laser causes less damage to TMJR prosthesis components compared to conventional HO removal methods. METHODS: This multiple test descriptive analysis simulated HO removal from TMJR prostheses mounted to stereolithic models. Simulated HO removal was completed using a novel Er,Cr:YSGG laser method and conventional methods which utilized a fissure carbide bur in a high-speed rotary instrument, a standard osteotome, and an ultrasonic aspirator. Surfaces exposed on the TMJR prostheses were analyzed for morphological or chemical change using scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. RESULTS: The Er,Cr:YSGG laser did not adversely affect the titanium screws or titanium components of the TMJR prostheses, while conventional methods of HO removal did. HO removal using the Er,Cr:YSGG laser and conventional methods both inflicted surface damage to the fossa ultrahigh molecular weight polyethylene component of the TMJR prostheses. CONCLUSION: Damage inflicted to titanium alloy or commercially pure titanium components of TMJR prostheses by conventional HO removal methods can be avoided by instead removing HO with an Er,Cr:YSGG laser. However, long exposure of the Er,Cr:YSGG laser to ultrahigh molecular weight polyethylene surfaces should be avoided. Additional research to expand on applications to other procedures and in other surgical fields is encouraged.


Assuntos
Lasers de Estado Sólido , Ossificação Heterotópica , Humanos , Lasers de Estado Sólido/uso terapêutico , Titânio , Qualidade de Vida , Ossificação Heterotópica/cirurgia , Polietilenos , Articulação Temporomandibular/cirurgia
6.
J Shoulder Elbow Surg ; 31(11): 2381-2391, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35671932

RESUMO

BACKGROUND: Total shoulder arthroplasty (TSA) has become the gold-standard treatment to relieve joint pain and disability in patients with glenohumeral osteoarthritis who do not respond to conservative treatment. An adverse reaction to metal debris released due to fretting corrosion has been a major concern in total hip arthroplasty. To date, it is unclear how frequently implant corrosion occurs in TSA and whether it is a cause of implant failure. This study aimed to characterize and quantify corrosion and fretting damage in a single anatomic TSA design and to compare the outcomes to the established outcomes of total hip arthroplasty. METHODS: We analyzed 21 surgically retrieved anatomic TSAs of the same design (Tornier Aequalis Pressfit). The retrieved components were microscopically examined for taper corrosion, and taper damage was scored. Head and stem taper damage was quantitatively measured with a non-contact optical coordinate-measuring machine. In selected cases, damage was further characterized at high magnifications using scanning electron microscopy. Energy-dispersive x-ray spectroscopy and metallographic evaluations were performed to determine underlying alloy microstructure and composition. Comparisons between groups with different damage features were performed with independent-samples t tests; Mann-Whitney tests and multivariate linear regression were conducted to correlate damage with patient factors. The level of statistical significance was set at P < .05. RESULTS: The average material loss for head and stem tapers was 0.007 mm3 and 0.001 mm3, respectively. Material loss was not correlated with sex, age, previous implant, or time in situ (P > .05). We observed greater volume loss in head tapers compared with stem tapers (P = .002). Implants with evidence of column damage had larger volumetric material loss than those without such evidence (P = .003). Column damage aligned with segregation bands within the alloy (preferential corrosion sites). The average angular mismatch was 0.03° (standard deviation, 0.0668°), with negative values indicating distal engagement and positive values indicating proximal engagement. Implants with proximal engagement were significantly more likely to have column damage than those with distal engagement (P = .030). DISCUSSION: This study has shown not only that the metal components of TSA implants can corrode but also that the risk of corrosion can be reduced by (1) eliminating preferential corrosion sites and (2) ensuring distal engagement to prevent fluid infiltration into the modular junction.


Assuntos
Artroplastia do Ombro , Prótese de Quadril , Humanos , Ligas , Metais , Desenho de Prótese , Falha de Prótese
7.
Clin Orthop Relat Res ; 479(9): 2083-2096, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019490

RESUMO

BACKGROUND: Fretting and corrosion in metal-on-polyethylene total hip arthoplasty (THA) modular junctions can cause adverse tissue reactions that are responsible for 2% to 5% of revision surgeries. Damage within cobalt-chromium-molybdenum (CoCrMo) alloy femoral heads can progress chemically and mechanically, leading to damage modes such as column damage, imprinting, and uniform fretting damage. At present, it is unclear which of these damage modes are most detrimental and how they may be linked to implant alloy metallurgy. The alloy microstructure exhibits microstructural features such as grain boundaries, hard phases, and segregation bands, which may enable different damage modes, higher material loss, and the potential risk of adverse local tissue reactions. QUESTIONS/PURPOSES: In this study, we asked: (1) How prevalent is chemically dominated column damage compared with mechanically dominated damage modes in severely damaged metal-on-polyethylene THA femoral heads made from wrought CoCrMo alloy? (2) Is material loss greater in femoral heads that underwent column damage? (3) Do material loss and the presence of column damage depend on alloy microstructure as characterized by grain size, hard phase content, and/or banding? METHODS: Surgically retrieved wrought CoCrMo modular femoral heads removed between June 2004 and June 2019 were scored using a modified version of the Goldberg visually based scoring system. Of the total 1002 heads retrieved over this period, 19% (190 of 1002) were identified as severely damaged, exhibiting large areas of fretting scars, black debris, pits, and/or etch marks. Of these, 43% (81 of 190) were excluded for metal-on-metal articulations, alternate designs (such as bipolar, dual-mobility, hemiarthroplasty, metal adaptor sleeves), or previous sectioning of the implant for past studies. One sample was excluded retroactively as metallurgical analysis revealed that it was made of cast alloy, yielding a total of 108 for further analysis. Information on patient age (57 ± 11 years) and sex (56% [61 of 108] were males), reason for removal, implant time in situ (99 ± 78 months), implant manufacturer, head size, and the CoCrMo or titanium-based stem alloy pairing were collected. Damage modes and volumetric material loss within the head tapers were identified using an optical coordinate measuring machine. Samples were categorized by damage mode groups by column damage, imprinting, a combination of column damage and imprinting, or uniform fretting. Metallurgical samples were processed to identify microstructural characteristics of grain size, hard phase content, and banding. Nonparametric Mann-Whitney U and Kruskal-Wallis statistical tests were used to examine volumetric material loss compared with damage mode and microstructural features, and linear regression was performed to correlate patient- and manufacturer-specific factors with volumetric material loss. RESULTS: Chemically driven column damage was seen in 48% (52 of 108) of femoral heads, with 34% (37 of 108) exhibiting a combination of column damage and imprinting, 12% (13 of 108) of heads displaying column damage and uniform fretting, and 2% (2 of 108) exhibiting such widespread column damage that potentially underlying mechanical damage modes could not be verified. Implants with column damage showed greater material loss than those with mechanically driven damage alone, with median (range) values of 1.2 mm3 (0.2 to 11.7) versus 0.6 mm3 (0 to 20.7; p = 0.03). Median (range) volume loss across all femoral heads was 0.9 mm3 (0 to 20.7). Time in situ, contact area, patient age, sex, head size, manufacturer, and stem alloy type were not associated with volumetric material loss. Banding of the alloy microstructure, with a median (range) material loss of 1.1 mm3 (0 to 20.7), was associated with five times higher material loss compared with those with a homogeneous microstructure, which had a volume loss of 0.2 mm3 (0 to 4.1; p = 0.02). Hard phase content and grain size showed no correlation with material loss. CONCLUSION: Chemically dominated column damage was a clear indicator of greater volume loss in this study sample of 108 severely damaged heads. Volumetric material loss strongly depended on banding (microstructural segregations) within the alloy. Banding of the wrought CoCrMo microstructure should be avoided during the manufacturing process to reduce volumetric material loss and the release of corrosion products to the periprosthetic tissue. CLINICAL RELEVANCE: Approximately 30% of THAs rely on wrought CoCrMo femoral heads. Most femoral heads in this study exhibited a banded microstructure that was associated with larger material loss and the occurrence of chemically dominated column damage. This study suggests that elimination of banding from the alloy could substantially reduce the release of implant debris in vivo, which could potentially also reduce the risk of adverse local tissue reactions to implant debris.


Assuntos
Artroplastia de Quadril/instrumentação , Ligas de Cromo/química , Cobalto/química , Prótese de Quadril/efeitos adversos , Molibdênio/química , Desenho de Prótese/efeitos adversos , Falha de Prótese/efeitos adversos , Idoso , Corrosão , Remoção de Dispositivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Propriedades de Superfície
8.
J Arthroplasty ; 36(7): 2603-2611.e2, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812716

RESUMO

BACKGROUND: Column damage is a unique degradation pattern observed in cobalt-chromium-molybdenum (CoCrMo) femoral head taper surfaces that resemble column-like troughs in the proximal-distal direction. We investigate the metallurgical origin of this phenomenon. METHODS: Thirty-two severely damaged CoCrMo femoral head retrievals from 7 different manufacturers were investigated for the presence of column damage and chemical inhomogeneities within the alloy microstructure via metallographic evaluation of samples sectioned off from the femoral heads. RESULTS: Column damage was found to affect 37.5% of the CoCrMo femoral heads in this study. All the column-damaged femoral heads exhibited chemical inhomogeneities within their microstructures, which comprised of regions enriched or depleted in molybdenum and chromium. Column damage appears as a dissolution of the entire surface with preferential corrosion along the molybdenum and chromium depleted regions. CONCLUSION: Molybdenum and chromium depleted zones serve as initiation sites for in vivo corrosion of the taper surface. Through crevice corrosion, the degradation spreads to the adjacent non-compositionally depleted areas of the alloy as well. Future improved alloy and processing recipes are required to ensure no chemical inhomogeneity due to segregation of solute elements are present in CoCrMo femoral heads.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Ligas de Cromo , Corrosão , Prótese de Quadril/efeitos adversos , Humanos , Desenho de Prótese , Falha de Prótese
9.
J Arthroplasty ; 35(6S): S55-S59, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005621

RESUMO

Adverse local tissue reactions (ALTRs) were first associated with patients with failed metal-on-metal surface replacements and total hip arthroplasty (THA). However, an increasing number of cases of ALTR in metal-on-polyethylene (MOP) THA patients is being reported. Clinically, ALTR appears as benign, aseptic masses or bursae in the periprosthetic tissues. Histopathologically, ALTRs are distinguished by an intense lymphocyte infiltrate, destruction of the synovial surfaces, widespread necrosis, and fibrin exudate. Tribocorrosion of modular junctions appears to be the cause of ALTR in MOP patients. The various tribocorrosion damage modes occurring at modular junctions produce metal ions and a diversity of particulates in relation to size, chemical composition, and structure. The mechanisms by which these various products of tribocorrosion lead to ALTR are still a matter of considerable research. This review clarifies what constitutes ALTR, its relationship to implant factors, and highlights current methods for diagnosis and management of patients with ALTR in the setting of MOP THA.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Cirurgiões , Artroplastia de Quadril/efeitos adversos , Corrosão , Prótese de Quadril/efeitos adversos , Humanos , Desenho de Prótese , Falha de Prótese , Reoperação
10.
J Arthroplasty ; 33(9): 2707-2711, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29705684

RESUMO

Adverse local tissue reactions to corrosion products can lead to total hip arthroplasty failure. Although this problem has been well known for more than 25 years, it has seemingly increased in frequency over the recent years. The occurrence of corrosion is multifactorial-depending on implant, patient, and surgeon factors. As of now, there is no "one-size-fits-all" solution to prevent corrosion in total hip arthroplasty devices. Thus, it is imperative to fully understand the exact mechanisms of modular junction corrosion to prevent premature implant failure. This review highlights a few key concepts that need to be explored to minimize the impact of corrosion. The key concepts include (1) the prevention of micromotion, (2) the role of implant alloy metallurgy in the corrosion process, (3) the in vivo generation of a corrosive environment, and (4) potential unanticipated problems.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Prótese de Quadril/efeitos adversos , Falha de Prótese , Ligas , Corrosão , Humanos , Teste de Materiais , Movimento , Desenho de Prótese
11.
Clin Orthop Relat Res ; 475(12): 3026-3043, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884275

RESUMO

BACKGROUND: Adverse local tissue reactions (ALTRs) triggered by corrosion products from modular taper junctions are a known cause of premature THA failure. CoCrMo devices are of particular concern because cobalt ions and chromium-orthophosphates were shown to be linked to ALTRs, even in metal-on-polyethylene THAs. The most common categories of CoCrMo alloy are cast and wrought alloy, which exhibit fundamental microstructural differences in terms of grain size and hard phases. The impact of implant alloy microstructure on the occurring modes of corrosion and subsequent metal ion release is not well understood. QUESTIONS/PURPOSES: The purpose of this study was to determine whether (1) the microstructure of cast CoCrMo alloy varies broadly between manufacturers and can dictate specific corrosion modes; and whether (2) the microstructure of wrought CoCrMo alloy is more consistent between manufacturers and has low implications on the alloy's corrosion behavior. METHODS: The alloy microstructure of four femoral-stem and three femoral-head designs from four manufacturers was metallographically and electrochemically characterized. Three stem designs were made from cast alloy; all three head designs and one stem design were made from wrought alloy. Alloy samples were sectioned from retrieved components and then polished and etched to visualize grain structure and hard phases such as carbides (eg, M23C6) or intermetallic phases (eg, σ phase). Potentiodynamic polarization (PDP) tests were conducted to determine the corrosion potential (Ecorr), corrosion current density (Icorr), and pitting potential (Epit) for each alloy. Four devices were tested within each group, and each measurement was repeated three times to ensure repeatable results. Differences in PDP metrics between manufacturers and between alloys with different hard phase contents were compared using one-way analysis of variance and independent-sample t-tests. Microstructural features such as twin boundaries and slip bands as well as corrosion damage features were viewed and qualitatively assessed in a scanning electron microscope. RESULTS: We found broad variability in implant alloy microstructure for both cast and wrought alloy between manufacturers, but also within the same implant design. In cast alloys, there was no difference in PDP metrics between manufacturers. However, coarse hard phases and clusters of hard phases (mainly intermetallic phases) were associated with severe phase boundary corrosion and pitting corrosion. Furthermore, cast alloys with hard phases had a lower Epit than those without (0.46 V, SD 0.042; 0.53 V, SD 0.03, respectively; p = 0.015). Wrought alloys exhibited either no hard phases or numerous carbides (M23C6). However, the corrosion behavior was mainly affected by lattice defects and banded structures indicative of segregations that appear to be introduced during bar stock manufacturing. Alloys with banding had a lower Ecorr (p = 0.008) and higher Icorr (p = 0.028) than alloys without banding (-0.76 V, SD 0.003; -0.73 V, SD 0.009; and 1.14 × 10-4 mA/cm2, SD 1.47 × 10-5; 5.2 × 10-5 mA/cm2, SD 2.57 × 10-5, respectively). Alloys with carbides had a slightly higher Ecorr (p = 0.046) than those without (-0.755 V, SD 0.005; -0.761 V, SD 0.004); however, alloys with carbides exhibited more severe corrosion damage as a result of phase boundary corrosion, hard phase detachment, and subsequent local crevice corrosion. CONCLUSIONS: The observed variability in CoCrMo alloy microstructure of both cast and wrought components in this study appears to be an important issue to address, perhaps through better standards, to minimize in vivo corrosion. The finding of the banded structures within wrought alloys is especially concerning because it unfavorably influences the corrosion behavior independent of the manufacturer. The findings suggest that a homogeneous alloy microstructure with a minimal hard phase fraction exhibits more favorable corrosion behavior within the in vivo environment of modular taper junctions, thus lowering metal ion release and subsequently the risk of ALTRs to corrosion products. Also, the question arises if hard phases fulfill a useful purpose in metal-on-polyethylene bearings, because they may come with a higher risk of phase boundary corrosion and pitting corrosion and the benefit they provide by adding strength is not needed (unlike in metal-on-metal bearings). CLINICAL RELEVANCE: Implant failure resulting from corrosion processes within modular junctions is a major concern in THA. Our results suggest that implant alloy microstructure is not sufficiently standardized and may also dictate specific corrosion modes and subsequent metal ion release.


Assuntos
Artroplastia de Quadril/instrumentação , Ligas de Cromo/química , Articulação do Quadril/cirurgia , Prótese de Quadril , Polietileno/química , Falha de Prótese , Artroplastia de Quadril/efeitos adversos , Corrosão , Remoção de Dispositivo , Análise de Falha de Equipamento , Humanos , Desenho de Prótese , Fatores de Risco , Propriedades de Superfície
12.
J Arthroplasty ; 32(9S): S272-S277, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28511949

RESUMO

BACKGROUND: Recently, corrosion at the head-neck junction in metal-on-polyethylene bearing surface total hip arthroplasty (THA) has been recognized as a cause of adverse local tissue reactions (ALTRs). Serum metal levels have been advocated as a tool for the diagnosis of ALTR; however, no prior studies have specifically examined their utility. The purpose of this study was to determine the optimal cutoff values for serum cobalt and chromium levels in diagnosing ALTR after metal-on-polyethylene bearing surface THA. METHODS: We reviewed 447 consecutive patients with serum metal levels tested at our institution and identified 64 patients with a metal-on-polyethylene bearing who had axial imaging or underwent reoperation to confirm the presence or absence of ALTR. Receiver-operating characteristic curves were produced to identify cutoff thresholds to optimize sensitivity, and diagnostic test performance was characterized. RESULTS: Forty-four of the 64 patients (69%) were positive for an ALTR. The best test for the diagnosis of ALTR was the serum cobalt level (area under the curve [AUC] = 99%). A threshold cutoff of ≥1.0 ng/mL had a sensitivity of 100%, specificity of 90%, positive predictive value (PPV) of 96%, and negative predictive value (NPV) of 100%. Serum chromium levels were also diagnostic (AUC = 87%). A threshold cutoff of ≥0.15 ng/mL had a sensitivity of 100%, specificity of 50%, PPV of 81%, and NPV of 100%. Finally, serum cobalt-to-chromium ratio was also helpful for diagnosis (AUC = 90%). A threshold cutoff value of 1.4 for the cobalt-to-chromium ratio offered a sensitivity of 93%, specificity of 70%, PPV of 87%, and NPV of 82%. CONCLUSION: Measurement of serum cobalt level with a threshold value of 1.0 ng/mL in our experience is the best test for identifying the presence of ALTR in patients with a metal-on-polyethylene THA. Measurement of chromium level and the ratio of cobalt-to-chromium levels are also of value.


Assuntos
Artroplastia de Quadril/efeitos adversos , Cromo/sangue , Cobalto/sangue , Prótese de Quadril/efeitos adversos , Metais/sangue , Polietileno/química , Falha de Prótese , Adulto , Idoso , Área Sob a Curva , Corrosão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Desenho de Prótese , Curva ROC , Reoperação , Sensibilidade e Especificidade , Resultado do Tratamento
13.
Clin Orthop Relat Res ; 474(8): 1867-75, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26891896

RESUMO

BACKGROUND: The longevity of total hip (THR) and knee replacements (TKR) that used historical bearing materials of gamma-in-air sterilized UHMWPE was affected more by osteolysis in THRs than in TKRs, although osteolysis remains a concern in TKRs. Therefore, the study of polyethylene wear is still of interest for the knee, particularly because few studies have investigated volumetric material loss in tibial knee inserts. For this study, a unique collection of autopsy-retrieved TKR and THR components that were well-functioning at the time of retrieval was used to compare volumetric wear differences between hip and knee polyethylene components made from identical material. QUESTIONS/PURPOSES: The following questions were addressed: (1) How much did the hip liners wear and what wear patterns did they exhibit? (2) How much did the knee inserts wear and what wear patterns did they exhibit? (3) What is the ratio between TKR and THR wear after controlling for implantation time and patient age? METHODS: We compared 23 THR components (Harris-Galante [HG] and HG II) and 20 TKR components (Miller-Galante [MG II]) that were retrieved postmortem. The components were made from the same polyethylene formulation and with similar manufacturing and sterilization (gamma-in-air) processes. Twenty-one patients (12 males, nine females) had THRs and 16 (four males, 12 females) had TKRs. Patients who had TKRs had an older (p = 0.001) average age than patients who had THRs (age, 75 years; SD, 10, versus 66 years; SD, 12, respectively). Only well-functioning components were included in this study. Therefore, implants retrieved postmortem from physically active patients and implanted for at least 2 years were considered. In addition, only normally wearing TKR components were considered, ie, those with fatigue wear (delamination) were excluded. The wear volume of each component was measured using metrology. For the tibial inserts an autonomous mathematic reconstruction method was used for quantification. RESULTS: The acetabular liners of the THR group had a wear rate of 38 mm(3) per year (95% CI, 29-47 mm(3)/year). Excluding patients with low-activity, the wear rate was 47 mm(3) per year (95% CI, 37-56 mm(3)/year). The wear rate of normally wearing tibial inserts was 17 mm(3) per year (95% CI, -6 to 40 mm(3)/year). After controlling for the relevant confounding variable of age, we found a TKR/THR wear rate ratio of 0.5 (95% CI, 0.29-0.77) at 70 years of age with a slightly increasing difference with increasing age. CONCLUSIONS: Excluding delamination, TKRs exhibited lower articular wear rates than THRs for historical polyethylene in these two unique cohorts of postmortem retrievals. CLINICAL RELEVANCE: The lower TKR wear rate is in line with the lower incidence of osteolysis in TKRs compared with THRs.


Assuntos
Artroplastia de Quadril/instrumentação , Artroplastia do Joelho/instrumentação , Articulação do Quadril/cirurgia , Articulação do Joelho/cirurgia , Polietileno/química , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Autopsia , Fenômenos Biomecânicos , Remoção de Dispositivo , Feminino , Articulação do Quadril/fisiopatologia , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Osteólise/etiologia , Desenho de Prótese , Falha de Prótese , Fatores de Risco , Estresse Mecânico , Fatores de Tempo , Resultado do Tratamento
14.
Clin Orthop Relat Res ; 474(10): 2232-42, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27339123

RESUMO

BACKGROUND: There are increasing reports of total hip arthroplasty failure subsequent to modular taper junction corrosion. The surfaces of tapers are machined to have circumferential machining marks, resulting in a surface topography of alternating peaks and valleys on the scale of micrometers. It is unclear if the geometry of this machined surface topography influences the degree of fretting and corrosion damage present on modular taper junctions or if there are differences between modular taper junction material couples. QUESTIONS/PURPOSES: (1) What are the differences in damage score and surface topography between CoCr/CoCr and CoCr/Ti modular junctions? (2) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/CoCr couples? (3) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/Ti couples? METHODS: Damage on stem and head tapers was evaluated with a modified Goldberg score. Differences in damage scores were determined between a group of 140 CoCr/CoCr couples and 129 CoCr/Ti couples using a chi-square test. For a subgroup of 70 retrievals, selected at random, we measured five variables, including initial stem taper machining mark height and spacing, initial head taper roughness, flexural rigidity, and taper angle mismatch. All retrievals were obtained at revision surgeries. None were retrieved as a result of metal-on-metal failures or were recalled implants. Components were chosen so there was a comparable number of each material couple and damage score. Machining marks around the circumference of the tapers were measured using white light interferometry to characterize the initial stem taper surface topography in terms of the height of and spacing between machining mark peaks as well as initial head taper roughness. The taper angle mismatch was assessed with a coordinate measuring machine. Flexural rigidity was determined based on measurements of gross taper dimensions and material properties. Differences of median or mean values of all variables between material couples were determined (Wilcoxon rank-sum tests and t-tests). The effect of all five variables along with time in situ on stem and head taper damage scores was tested with a multiple regression model. With 70 retrievals, a statistical power of 0.8 could be achieved for the model. RESULTS: Damage scores were different between CoCr/CoCr and CoCr/Ti modular taper junction material couples. CoCr/CoCr stem tapers were less likely to be mildly damaged (11%, p = 0.006) but more likely to be severely damaged (4%, p = 0.02) than CoCr/Ti stem tapers (28% and 1%, respectively). CoCr/CoCr couples were less likely to have moderately worn head tapers (7% versus 17%, p = 0.003). Stem taper machining mark height and spacing and head taper roughness were 11 (SD 3), 185 (SD 46), and 0.57 (SD 0.5) for CoCr/CoCr couples and 10 (SD 3), 170 (SD 56), and 0.64 (SD 0.4) for CoCr/Ti couples, respectively. There was no difference (p = 0.09, p = 0.1, p = 0.16, respectively) for either factor between material couples. Larger stem taper machining mark heights (p = 0.001) were associated with lower stem taper damage scores, and time in situ (p = 0.006) was associated with higher stem taper damage scores for CoCr/CoCr material couples. Stem taper machining marks that had higher peaks resulted in slower damage progression over time. For CoCr/Ti material couples, head taper roughness was associated with higher stem (p = 0.001) and head taper (p = 0.003) damage scores, and stem taper machining mark height, but not time in situ, was associated with lower stem taper damage scores (p = 0.007). CONCLUSIONS: Stem taper surface topography was related to damage scores on retrieved head-neck modular junctions; however, it affected CoCr/CoCr and CoCr/Ti couples differently. CLINICAL RELEVANCE: A taper topography of circumferential machining marks with higher peaks appears to enable slower damage progression and, subsequently, a reduction of the reported release of corrosion products. This may be of interest to implant designers and manufacturers in an effort to reduce the effects of metal release from modular femoral components.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Articulação do Quadril/cirurgia , Prótese de Quadril , Próteses Articulares Metal-Metal , Falha de Prótese , Distribuição de Qui-Quadrado , Ligas de Cromo , Remoção de Dispositivo , Análise de Falha de Equipamento , Articulação do Quadril/fisiopatologia , Humanos , Microscopia Eletrônica de Varredura , Polietileno , Desenho de Prótese , Sistema de Registros , Análise de Regressão , Reoperação , Estudos Retrospectivos , Fatores de Risco , Propriedades de Superfície , Fatores de Tempo , Titânio , Falha de Tratamento
15.
J Biomed Mater Res B Appl Biomater ; 112(2): e35387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340016

RESUMO

Past evaluation of particle contamination on packaged implants has typically been conducted using US Pharmacopeia (USP) 788, a 1970s pharmaceutical guideline created to evaluate contaminant particles in injectable fluids and syringes. Our objective was to reestablish relevant acceptance criteria for residual orthopedic and other implant debris, including smaller particles (i.e., <10 µm in diameter). Packaged total hip arthroplasty (THA) titanium (Ti6Al4V)-alloy femoral stems were used (hydroxyapatite [HA]-coated and non-coated stems). Short-term ultrasonication and longer-term 24-hour soak/agitation methods were used to elute surface-bound contaminant particles, and released particles were analyzed via scanning electron microscopy, energy-dispersive x-ray analysis, image analysis, and particle characterization. For HA-coated THA-stems, >99% of eluted particles were calcium phosphate. For plain non-coated THA-stems, >99% of eluted particles were titanium-alloy-based. The number-based median size of particles in both groups was approximately 1.5 µm in diameter despite being composed of different materials. The total volume of particulate removed from HA-coated stems was 0.037 mm3 (671 × 103 particles total), which was approximately >50-fold more volume than that on plain non-coated stems at 0.0006 mm3 (89 × 103 particles total). Only non-coated THA stems passed reestablished USP788 acceptance criteria, compared by using equivalent total volumes of contaminant particulate within new and legacy guideline ranges of >10 and >25 µm ECD, that is, <1.0 × 107 particles for <1 µm diameter in size, <600,000 for <1-10 µm, <6000 for 10-25 µm and <600 for >25 µm. These results fill a knowledge gap on how much residual debris can be expected to exist on packaged implants and can be used as a basis for updating acceptance criteria (i.e., termed USP788-Implant [USP788-I]). Residual implant particulate assessment is critical given the increasing implant complexity and new manufacturing techniques (e.g., additive manufacturing).


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Artroplastia de Quadril/métodos , Titânio , Durapatita , Ligas
16.
APMIS ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741279

RESUMO

The use of highly crosslinked ultra-high molecular weight polyethylene (XLPE) has significantly reduced the volumetric wear of acetabular liners, thereby reducing the incidence of osteolysis. However, contemporary components tend to generate smaller wear particles, which can no longer be identified using conventional histology. This technical limitation can result in imprecise diagnosis. Here, we report on two uncemented total hip arthroplasty cases (~7 years in situ) revised for periprosthetic fracture of the femur and femoral loosening, respectively. Both liners exhibited prominent wear. The retrieved pseudocapsular tissue exhibited a strong macrophage infiltration without microscopically identifiable polyethylene particles. Yet, using Fourier-transform infrared micro-spectroscopic imaging (FTIR-I), we demonstrated the prominent intracellular accumulation of polyethylene debris in both cases. This study shows that particle induced osteolysis can still occur with XLPE liners, even under 10 years in situ. Furthermore, we demonstrate the difficulty of determining the presence of polyethylene debris within periprosthetic tissue. Considering the potentially increased bioactivity of finer particles from XLPE compared to conventional liners, an accurate detection method is required, and new histopathological hallmarks of particle induced osteolysis are needed. FTIR-I is a great tool to that end and can help the accurate determination of foreign body tissue responses.

17.
J Mech Behav Biomed Mater ; 152: 106449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387118

RESUMO

Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Corrosão , Ligas , Cromo , Cobalto , Molibdênio , Eletrólitos
18.
Langmuir ; 29(15): 4813-22, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23550942

RESUMO

The corrosion of CoCrMo, an alloy frequently used in orthopedic implants, was studied with an electrochemical quartz crystal microbalance (QCM) in three physiologically relevant solutions. Mass changes were measured during potentiodynamic tests, showing material deposition in protein solutions at potential levels that caused mass loss when the proteins were not present. X-ray photoelectron spectroscopy (XPS) data indicated that the deposited material was primarily organic and therefore was most likely derived from proteins in the electrolyte. Material deposition consistently occurred at a critical potential and was not dependent on the current density or total charge released into solution. Corrosion studies on pure Co, Cr, and Mo in protein solutions found material deposition only on Mo. We hypothesize that organic deposition results from the interaction of Mo(VI) with proteins in the surrounding solution. The organic layer is reminiscent of tribochemical reaction layers that form on the surface of CoCrMo hip bearings, suggesting that these types of layers can be formed by purely electrochemical means.


Assuntos
Ligas/química , Técnicas Eletroquímicas , Molibdênio/química , Técnicas de Microbalança de Cristal de Quartzo , Substâncias Macromoleculares/química , Propriedades de Superfície
19.
Biotribology (Oxf) ; 35-362023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053775

RESUMO

Polyethylene wear has been a concern for the longevity of total knee replacements (TKR). A characteristic wear feature often observed on the articular surfaces of retrieved polyethylene tibial inserts is a striated pattern of hills and troughs. This pattern is of interest because its surface area has been found to correlate with increased tibial insert wear. We therefore addressed the following two research questions: (1) What is the prevalence of the striated pattern on a contemporary tibial insert design made from conventional ultra-high-molecular-weight polyethylene (UHMWPE)? (2) Are the peaks and troughs of the striated pattern connected with differences in crystallinity developed during the wear process? The prevalence and area coverage of the striated patterns were determined on a set of 81 retrieved tibial inserts of a cruciate-retaining TKR design. The striated areas were mapped using an optical coordinate measuring machine. Differences in crystallinity between troughs and hills were determined on a representative tibial insert using Raman spectroscopy. The striated pattern was observed on 61 out of 81 (75%) of the retrieved tibial inserts, covering an average of 32% of the total articular area. In the representative insert that was evaluated, the hills exhibited higher crystallinity (68%) than the troughs (54%) (p = 0.001). Conversely, the troughs exhibited higher amorphous phase content (22%) than the hills (19%) (p = 0.04). In conclusion, this pattern of hills and troughs is another example of microstructural changes in UHMWPE stemming from tribological stresses.

20.
J Orthop Res ; 41(2): 418-425, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35488727

RESUMO

Implant failure due to fretting corrosion at the head-stem modular junction is an increasing problem in modular total hip arthroplasty. The effect of varying microgroove topography on modular junction contact mechanics has not been well characterized. The aim of this study was to employ a novel, microgrooved finite element (FEA) model of the hip taper interface and assess the role of microgroove geometry and taper mismatch angle on the modular junction mechanics during assembly. A two-dimensional, axisymmetric FEA model was created using a modern 12/14 taper design of a CoCrMo femoral head taper and Ti6Al4V stem taper. Microgrooves were modeled at the contacting interface of the tapers and varied based on height and spacing measurements obtained from a repository of measured retrievals. Additionally, taper angular mismatch between the head and stem was varied to simulate proximal- and distal-locked engagement. Forty simulations were conducted to parametrically evaluate the effects of microgroove surface topography and angular mismatch on predicted contact area, contact pressure, and equivalent plastic strain. Multiple linear regression analysis was highly significant (p < 0.001; R2 > 0.74) for all outcome variables. The regression analysis identified microgroove geometry on the head taper to have the greatest influence on modular junction contact mechanics. Additionally, there was a significant second order relationship between both peak contact pressure (p < 0.001) and plastic strain (p < 0.001) with taper mismatch angle. These modeling techniques will be used to identify the implant parameters that maximize taper interference strength via large in-silico parametric studies.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Falha de Prótese , Desenho de Prótese , Análise de Regressão , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA