Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406389, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801753

RESUMO

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.

2.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513038

RESUMO

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Peptídeo Sintases , Engenharia de Proteínas , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Filogenia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Análise de Sequência de Proteína
3.
Methods Mol Biol ; 2670: 219-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37184707

RESUMO

The bioengineering of nonribosomal peptide synthetases (NRPSs) is a rapidly developing field to access natural product derivatives and new-to-nature natural products like scaffolds with changed or improved properties. However, the rational (re-)design of these often gigantic assembly-line proteins is by no means trivial and needs in-depth insights into structural flexibility, inter-domain communication, and the role of proofreading by catalytic domains-so it is not surprising that most previous rational reprogramming efforts have been met with limited success. With this practical guide, the result of nearly one decade of NRPS engineering in the Bode lab, we provide valuable insights into the strategies we have developed during this time for the successful engineering and cloning of these fascinating molecular machines.


Assuntos
Peptídeo Sintases , Peptídeo Sintases/química , Domínio Catalítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA