Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 17(5): 47-59, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685123

RESUMO

"Burst-mode" modulated arc therapy (hereafter referred to as "mARC") is a form of volumetric-modulated arc therapy characterized by variable gantry rotation speed, static MLCs while the radiation beam is on, and MLC repositioning while the beam is off. We present our clinical experience with the planning techniques and plan quality assurance measurements of mARC delivery. Clinical mARC plans for five representative cases (prostate, low-dose-rate brain, brain with partial-arc vertex fields, pancreas, and liver SBRT) were generated using a Monte Carlo-based treatment planning system. A conventional-dose-rate flat 6 MV and a high-dose-rate non-flat 7 MV beam are available for planning and delivery. mARC plans for intact-prostate cases can typically be created using one 360° arc, and treatment times per fraction seldom exceed 6 min using the flat beam; using the nonflat beam results in slightly higher MU per fraction, but also in delivery times less than 4 min and with reduced mean dose to distal organs at risk. mARC also has utility in low-dose-rate brain irradiation; mARC fields can be designed which deliver a uniform 20 cGy dose to the PTV in approximately 3-minute intervals, making it a viable alternative to conventional 3D CRT. For brain cases using noncoplanar arcs, delivery time is approximately six min using the nonflat beam. For pancreas cases using the nonflat beam, two overlapping 360° arcs are required, and delivery times are approximately 10 min. For liver SBRT, the time to deliver 800 cGy per frac-tion is at least 12 min. Plan QA measurements indicate that the mARC delivery is consistent with the plan calculation for all cases. mARC has been incorporated into routine practice within our clinic; currently, on average approximately 15 patients per day are treated using mARC; and with the exception of LDR brain cases, all are treated using the nonflat beam.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Hepáticas/radioterapia , Neoplasias Pancreáticas/radioterapia , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas , Humanos , Masculino , Método de Monte Carlo , Dosagem Radioterapêutica
2.
Med Phys ; 38(9): 5104-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21978056

RESUMO

PURPOSE: A novel rotational IMRT (rIMRT) technique using burst delivery (continuous gantry rotation with beam off during MLC repositioning) is investigated. The authors evaluate the plan quality and delivery efficiency and accuracy of this dynamic technique with a conventional flat 6 MV photon beam. METHODS: Burst-delivery rIMRT was implemented in a planning system and delivered with a 160-MLC linac. Ten rIMRT plans were generated for five anonymized patient cases encompassing head and neck, brain, prostate, and prone breast. All plans were analyzed retrospectively and not used for treatment. Among the varied plan parameters were the number of optimization points, number of arcs, gantry speed, and gantry angle range (alpha) over which the beam is turned on at each optimization point. Combined rotational/step-and-shoot rIMRT plans were also created by superimposing multiple-segment static fields at several optimization points. The rIMRT trial plans were compared with each other and with plans generated using helical tomotherapy and VMAT. Burst-mode rotational IMRT plans were delivered and verified using a diode array, ionization chambers, thermoluminescent dosimeters, and film. RESULTS: Burst-mode rIMRT can achieve plan quality comparable to helical tomotherapy, while the former may lead to slightly better OAR sparing for certain cases and the latter generally achieves slightly lower hot spots. Few instances were found in which increasing the number of optimization points above 36, or superimposing step-and-shoot IMRT segments, led to statistically significant improvements in OAR sparing. Using an additional rIMRT partial arc yielded substantial OAR dose improvements for the brain case. Measured doses from the rIMRT plan delivery were within 4% of the plan calculation in low dose gradient regions. Delivery time range was 228-375 s for single-arc rIMRT 200-cGy prescription with a 300 MU/min dose rate, comparable to tomotherapy and VMAT. CONCLUSIONS: Rotational IMRT with burst delivery, whether combined with static fields or not, yields clinically acceptable and deliverable treatment plans.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Rotação , Humanos , Neoplasias/radioterapia , Fótons/uso terapêutico , Dosagem Radioterapêutica
3.
Magn Reson Med ; 64(2): 418-29, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20665786

RESUMO

Diffusion-weighted MRI is an intrinsically low signal-to-noise ratio application due to the application of diffusion-weighting gradients and the consequent longer echo times. The signal-to-noise ratio worsens with increasing image resolution and diffusion imaging methods that use multiple and higher b-values. At low signal-to-noise ratios, standard magnitude reconstructed diffusion-weighted images are confounded by the existence of a rectified noise floor, producing poor estimates of diffusion metrics. Herein, we present a simple method of rectified noise floor suppression that involves phase correction of the real data. This approach was evaluated for diffusion-weighted imaging data, obtained from ethanol and water phantoms and the brain of a healthy volunteer. The parameter fits from monoexponential, biexponential, and stretched-exponential diffusion models were computed using phase-corrected real data and magnitude data. The results demonstrate that this newly developed simple approach of using phase-corrected real images acts to reduce or even suppress the confounding effects of a rectified noise floor, thereby producing more accurate estimates of diffusion parameters.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/instrumentação , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Front Oncol ; 10: 1694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984048

RESUMO

PURPOSE: We present the advantages of using dual-energy CT (DECT) for radiation therapy (RT) planning based on our clinical experience. METHODS: DECT data acquired for 20 representative patients of different tumor sites and/or clinical situations with dual-source simultaneous scanning (Drive, Siemens) and single-source sequential scanning (Definition, Siemens) using 80 and 140-kVp X-ray beams were analyzed. The data were used to derive iodine maps, fat maps, and mono-energetic images (MEIs) from 40 to 190 keV to exploit the energy dependence of X-ray attenuation. The advantages of using these DECT-derived images for RT planning were investigated. RESULTS: When comparing 40 keV MEIs to conventional 120-kVp CT, soft tissue contrast between the duodenum and pancreatic head was enhanced by a factor of 2.8. For a cholangiocarcinoma patient, contrast between tumor and surrounding tissue was increased by 96 HU and contrast-to-noise ratio was increased by up to 60% for 40 keV MEIs compared to conventional CT. Simultaneous dual-source DECT also preserved spatial resolution in comparison to sequential DECT as evidenced by the identification of vasculature in a pancreas patient. Volume of artifacts for five patients with titanium implants was reduced by over 95% for 190 keV MEIs compared to 120-kVp CT images. A 367-cm3 region of photon starvation was identified by low CT numbers in the soft tissue of a mantle patient in a conventional CT scan but was eliminated in a 190 keV MEI. Fat maps enhanced image contrast as demonstrated by a meningioma patient. CONCLUSION: The use of DECT for RT simulation offers clinically meaningful advantages through improved simulation workflow and enhanced structure delineation for RT planning.

5.
Tomography ; 2(4): 295-307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090589

RESUMO

Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA