Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 10(1): 35-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25017148

RESUMO

AIM: To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells. MATERIALS & METHODS: The stability, nanotoxicity of the modified nanoformulation was evaluated and their anticancer efficacy was re-examined. Their mechanism of internalization was studied and we identified the role of various miRNAs in absorption of these NCs/iron in various body parts of mice. We determined the effect of these NCs on survivin, stem cell markers, red blood cell count, iron, calcium and zinc concentration in mice, determined the antiangiogenic properties of these NCs and studied their effect on cancer stem-like cells. RESULTS: Spherical NCs (396.1 ± 27.2 nm) exceedingly reduced viability of Caco-2 cells (32 ± 2.83%). The NCs also showed effective internalization and reduction of cancer stem cell markers in triple-positive CD133, survivin and CD44 cancer stem-like cells. Mice treated with the NCs showed no nanotoxicity and did not develop any tumors in xenograft colon cancer models. We found that the serum iron, zinc and calcium absorption were increased. DMT1, LRP, transferrin and lactoferrin receptors were responsible for internalization of the NCs. Different miRNAs were responsible for iron regulation in different organs. Interestingly, NCs inhibited survivin and its different isoforms. CONCLUSION: Our results confirmed that NCs internalized and changed the expression of selected miRNAs that further enhanced their uptake. The NCs activated both extrinsic, as well as intrinsic apoptotic pathways to induce apoptosis by targeting survivin in cancer cells and cancer stem cells, without inducing any nonspecific nanotoxicity. Apart from inhibiting angiogenesis and stem cell markers, NCs also maintained iron and calcium levels.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Proteínas Inibidoras de Apoptose/biossíntese , Lactoferrina/administração & dosagem , Nanocápsulas/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células CACO-2 , Cálcio/metabolismo , Bovinos , Quitosana/administração & dosagem , Quitosana/química , Neoplasias do Colo/patologia , Sistemas de Liberação de Medicamentos , Humanos , Ferro/metabolismo , Lactoferrina/química , Camundongos , Nanocápsulas/química , Células-Tronco Neoplásicas/patologia , Survivina , Zinco/metabolismo
2.
Chem Commun (Camb) ; 51(46): 9499-502, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25968110

RESUMO

In this study, we investigated the efficacy of an LNA (locked nucleic acid)-modified DNA aptamer named RNV66 targeting VEGF against various breast cancer cell lines. Our results demonstrate that RNV66 efficiently inhibits breast cancer cell proliferation both in vitro and in vivo. Introduction of LNA nucleotides were crucial for higher efficacy. Furthermore, the binding interaction of RNV66 with VEGF was investigated using molecular dynamic simulations leading to the first computational model of the LNA aptamer-VEGF complex blocking its interaction with VEGF-receptor.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Guanina , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligonucleotídeos/química , Carga Tumoral/efeitos dos fármacos
3.
Curr Gene Ther ; 13(5): 322-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24369059

RESUMO

Understanding the cellular target structure and thereby proposing the best delivery system to achieve sustained release of drugs has always been a significant area of focus in biomedical research for translational benefits. Specific targeting of the receptors expressed on the target cell represents an effective strategy for increasing the pharmacological efficacy of the administered drug. Liposomes offer enhanced conveyance as a potential carrier of biomacromolecules such as anti-cancer proteins, drugs and siRNA for targeting tumour cell death. Commonly used liposomal constructs for various therapies are Doxil, Myocet, DepoCyt and Abraxanes. However, recent strategy of using multifunctional liposomes for the sustained release of drugs with increased plasma residence time and monoclonal antibody-based targeting of tumours coupled with imaging modalities have attracted enormous scientific attention. The ability of liposomes coated with specific ligands such as Apo-E derived RGD R9 and Tat peptide, to reverse the conceptualisation of drug resistance and cross the blood brain barrier, provides promising future for their use as an efficient drug delivery system. By outlining the recent advancements and innovations in the established concept of liposomal drug delivery, this review will focus on the multifunctional liposomes as an emerging novel lipid based drug delivery system.


Assuntos
Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Lipossomos/química , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , RNA Interferente Pequeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA