Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659809

RESUMO

Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.

2.
Cell Rep ; 42(9): 113151, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713310

RESUMO

Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.


Assuntos
Caenorhabditis elegans , Cognição , Humanos , Animais , Camundongos , Idoso , Pré-Escolar , Idoso de 80 Anos ou mais , Caenorhabditis elegans/metabolismo , Cognição/fisiologia , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Memória/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Envelhecimento/metabolismo , Mamíferos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
3.
Sci Adv ; 8(18): eabm2545, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544642

RESUMO

Parvalbumin-positive (PV+) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV+ interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown. Here, we show that MIA down-regulates microglial Gpr56 expression in fetal brains in an interleukin-17a-dependent manner and that conditional deletion of microglial Gpr56 [Gpr56 conditional knockout (cKO)] mimics MIA-induced PV+ interneuron defects and autism-like behaviors in offspring. We further demonstrate that elevated microglial tumor necrosis factor-α expression is the underlying mechanism by which MIA and Gpr56 cKO impair interneuron generation. Genetically restoring Gpr56 expression in microglia ameliorates PV+ interneuron deficits and autism-like behaviors in MIA offspring. Together, our study demonstrates that microglial GPR56 plays an important role in PV+ interneuron development and serves as a salient target of MIA-induced neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Interneurônios/metabolismo , Microglia/metabolismo , Parvalbuminas/metabolismo
4.
Cell Rep ; 41(6): 111612, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351399

RESUMO

DNA methylation has emerged as a critical modulator of neuronal plasticity and cognitive function. Notwithstanding, the role of enzymes that demethylate DNA remain to be fully explored. Here, we report that loss of ten-eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), in adult neurons enhances cognitive function. In the adult mouse hippocampus, we detected an enrichment of Tet2 in neurons. Viral-mediated neuronal overexpression and RNA interference of Tet2 altered dendritic complexity and synaptic-plasticity-related gene expression in vitro. Overexpression of neuronal Tet2 in adult hippocampus, and loss of Tet2 in adult glutamatergic neurons, resulted in differential hydroxymethylation associated with genes involved in synaptic transmission. Functionally, overexpression of neuronal Tet2 impaired hippocampal-dependent memory, while loss of neuronal Tet2 enhanced memory. Ultimately, these data identify neuronal Tet2 as a molecular target to boost cognitive function.


Assuntos
Dioxigenases , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Metilação de DNA/genética , Cognição , Neurônios/metabolismo , Hipocampo/metabolismo
5.
Cell Stem Cell ; 25(1): 87-102.e9, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271750

RESUMO

Ectopic expression of combinations of transcription factors (TFs) can drive direct lineage conversion, thereby reprogramming a somatic cell's identity. To determine the molecular mechanisms by which Gata4, Mef2c, and Tbx5 (GMT) induce conversion from a cardiac fibroblast toward an induced cardiomyocyte, we performed comprehensive transcriptomic, DNA-occupancy, and epigenomic interrogation throughout the reprogramming process. Integration of these datasets identified new TFs involved in cardiac reprogramming and revealed context-specific roles for GMT, including the ability of Mef2c and Tbx5 to independently promote chromatin remodeling at previously inaccessible sites. We also find evidence for cooperative facilitation and refinement of each TF's binding profile in a combinatorial setting. A reporter assay employing newly defined regulatory elements confirmed that binding of a single TF can be sufficient for gene activation, suggesting that co-binding events do not necessarily reflect synergy. These results shed light on fundamental mechanisms by which combinations of TFs direct lineage conversion.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Reprogramação Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Fator de Transcrição GATA4/genética , Fatores de Transcrição MEF2/genética , Aprendizado de Máquina , Camundongos , Ligação Proteica , Proteínas com Domínio T/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA