Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 16(5): 866-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621614

RESUMO

The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution.


Assuntos
Proteínas de Plantas/análise , Plantas/metabolismo , Proteoma/análise , Proteômica/métodos , Biologia de Sistemas/métodos , Transdução de Sinais
2.
Membranes (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999337

RESUMO

In the global race to produce green hydrogen, wastewater-to-H2 is a sustainable alternative that remains unexploited. Efficient technologies for wastewater-to-H2 are still in their developmental stages, and urgent process intensification is required. In our study, a mechanistic model was developed to characterize hydrogen production in an AnMBR treating high-strength wastewater (COD > 1000 mg/L). Two aspects differentiate our model from existing literature: First, the model input is a multi-substrate wastewater that includes fractions of proteins, carbohydrates, and lipids. Second, the model integrates the ADM1 model with physical/biochemical processes that affect membrane performance (e.g., membrane fouling). The model includes mass balances of 27 variables in a transient state, where metabolites, extracellular polymeric substances, soluble microbial products, and surface membrane density were included. Model results showed the hydrogen production rate was higher when treating amino acids and sugar-rich influents, which is strongly related to higher EPS generation during the digestion of these metabolites. The highest H2 production rate for amino acid-rich influents was 6.1 LH2/L-d; for sugar-rich influents was 5.9 LH2/L-d; and for lipid-rich influents was 0.7 LH2/L-d. Modeled membrane fouling and backwashing cycles showed extreme behaviors for amino- and fatty-acid-rich substrates. Our model helps to identify operational constraints for H2 production in AnMBRs, providing a valuable tool for the design of fermentative/anaerobic MBR systems toward energy recovery.

3.
Water Res X ; 9: 100071, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33083778

RESUMO

Anthropogenic fecal pollution in urban waterbodies can promote the spread of waterborne disease. The objective of this study was to test crAssphage, a novel viral human fecal marker not previously applied for fecal source tracking in Latin America, as a fecal pollution marker in an urban river in Chile. Human fecal markers crAssphage CPQ_064 and Bacteroides HF183, the human pathogen norovirus GII, and culturable fecal indicator bacteria (FIB) were quantified at six locations spanning reaches of the Mapocho River from upstream to downstream of Santiago, as well as in repeated sub-daily frequency samples at two urban locations. Norovirus showed positive correlation trends with crAssphage (τ = 0.57, p = 0.06) and HF183 (τ = 0.64, p = 0.03) in river water, but not with E. coli or enterococci. CrAssphage and HF183 concentrations were strongly linearly related (slope = 0.97, p < 0.001). Chlorinated wastewater effluent was an important source of norovirus GII genes to the Mapocho. Precipitation showed non-significant positive relationships with human and general fecal indicators. Concentrations of crAssphage and HF183 in untreated sewage were 8.35 and 8.07 log10 copy/100 ml, respectively. Preliminary specificity testing did not detect crAssphage or HF183 in bird or dog feces, which are predominant non-human fecal sources in the urban Mapocho watershed. This study is the first to test crAssphage for microbial source tracking in Latin America, provides insight into fecal pollution dynamics in a highly engineered natural system, and indicates river reaches where exposure to human fecal pollution may pose a public health risk.

4.
Bioresour Technol ; 161: 385-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727699

RESUMO

The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal.


Assuntos
Fontes de Energia Bioelétrica , Esgotos , Gerenciamento de Resíduos/métodos , Fontes de Energia Bioelétrica/economia , Cidades , Estudos de Viabilidade , Gerenciamento de Resíduos/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA