Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 524(7565): 366-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26168400

RESUMO

Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.


Assuntos
Organismos Aquáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/citologia , Diatomáceas/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo , Força Próton-Motriz , Trifosfato de Adenosina/metabolismo , Organismos Aquáticos/citologia , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Ciclo do Carbono , Diatomáceas/enzimologia , Diatomáceas/genética , Ecossistema , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Oceanos e Mares , Oxirredução , Oxirredutases/deficiência , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo
2.
New Phytol ; 221(3): 1303-1316, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30216452

RESUMO

Diatom dominance in contemporary aquatic environments indicates that they have developed unique and effective mechanisms to cope with the rapid and considerable fluctuations that characterize these environments. In view of their evolutionary history from a secondary endosymbiosis, inter-organellar regulation of biochemical activities may be of particular relevance. Diatom mitochondrial alternative oxidase (AOX) is believed to play a significant role in supplying chloroplasts with ATP produced in the mitochondria. Using the model diatom Phaeodactylum tricornutum we generated AOX knockdown lines, and followed sensitivity to stressors, photosynthesis and transcriptome and metabolome profiles of wild-type and knockdown lines. We show here that expression of the AOX gene is upregulated by various stresses including H2 O2 , heat, high light illumination, and iron or nitrogen limitation. AOX knockdown results in hypersensitivity to stress. Knockdown lines also show significantly reduced photosynthetic rates and their chloroplasts are more oxidized. Comparisons of transcriptome and metabolome profiles suggest a strong impact of AOX activity on gene expression, which is carried through to the level of the metabolome. Our data provide evidence for the involvement of mitochondrial AOX in processes central to the cell biology of diatoms, revealing that cross-talk between mitochondria and chloroplasts is crucial for maintaining sensitivity to changing environments.


Assuntos
Organismos Aquáticos/enzimologia , Cloroplastos/metabolismo , Diatomáceas/enzimologia , Diatomáceas/fisiologia , Regulação para Baixo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Organismos Aquáticos/fisiologia , Glutationa/metabolismo , Metabolômica , Oxirredução , Fotossíntese , Transcriptoma/genética
3.
Mediators Inflamm ; 2014: 472625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24665164

RESUMO

This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.


Assuntos
Linfócitos T CD4-Positivos/citologia , Regulação da Expressão Gênica , Psoríase/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Psoríase/imunologia , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
J Exp Bot ; 63(4): 1543-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268145

RESUMO

Diatoms are unicellular, mainly photosynthetic, eukaryotes living within elaborate silicified cell walls and believed to be responsible for around 40% of global primary productivity in the oceans. Their abundance in aquatic ecosystems is such that they have on different occasions been described as the insects, the weeds, or the cancer cells of the ocean. In contrast to higher plants and green algae which derive from a primary endosymbiosis, diatoms are now believed to originate from a serial secondary endosymbiosis involving both green and red algae and a heterotrophic exosymbiont host. As a consequence of their dynamic evolutionary history, they appear to have red algal-derived chloroplasts empowered largely by green algal proteins, working alongside mitochondria derived from the non-photosynthetic exosymbiont. This review will discuss the evidence for such an unusual assemblage of organelles in diatoms, and will present the evidence implying that it has enabled them with unorthodox metabolisms that may have contributed to their profound ecological success.


Assuntos
Cloroplastos/metabolismo , Diatomáceas/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA