Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 43(17): 3587-3603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951609

RESUMO

Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.


Assuntos
Inflamação , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Mesenquimais , eIF-2 Quinase , Animais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Camundongos , Humanos , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Osteoblastos/metabolismo , Calcificação Fisiológica/genética
3.
Clin Oral Investig ; 27(7): 3379-3392, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37301790

RESUMO

OBJECTIVES: Oral conditions are of high prevalence and chronic character within the general population. Identifying the risk factors and determinants of oral disease is important, not only to reduce the burden of oral diseases, but also to improve (equal access to) oral health care systems, and to develop effective oral health promotion programs. Longitudinal population-based (birth-)cohort studies are very suitable to study risk factors on common oral diseases and have the potential to emphasize the importance of a healthy start for oral health. In this paper, we provide an overview of the comprehensive oral and craniofacial dataset that has been collected in the Generation R study: a population-based prospective birth cohort in the Netherlands that was designed to identify causes of health from fetal life until adulthood. METHODS: Within the multidisciplinary context of the Generation R study, oral and craniofacial data has been collected from the age of 3 years onwards, and continued at the age of six, nine, and thirteen. Data collection is continuing in 17-year-old participants. RESEARCH OUTCOMES: In total, the cohort population comprised 9749 children at birth, and 7405 eligible participants at the age of seventeen. Based on questionnaires, the dataset contains information on oral hygiene, dental visits, oral habits, oral health-related quality of life, orthodontic treatment, and obstructive sleep apnea. Based on direct measurements, the dataset contains information on dental caries, developmental defects of enamel, objective orthodontic treatment need, dental development, craniofacial characteristics, mandibular cortical thickness, and 3D facial measurements. CONCLUSIONS: Several research lines have been set up using the oral and craniofacial data linked with the extensive data collection that exists within the Generation R study. CLINICAL RELEVANCE: Being embedded in a multidisciplinary and longitudinal birth cohort study allows researchers to study several determinants of oral and craniofacial health, and to provide answers and insight into unknown etiologies and oral health problems in the general population.


Assuntos
Cárie Dentária , Doenças da Boca , Criança , Recém-Nascido , Humanos , Adulto , Pré-Escolar , Adolescente , Cárie Dentária/epidemiologia , Estudos de Coortes , Qualidade de Vida , Estudos Prospectivos , Saúde Bucal
4.
Bone ; 182: 117070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460828

RESUMO

Bone Health Index (BHI) has been proposed as a useful instrument for assessing bone health in children. However, its relationship with fracture risk remains unknown. We aimed to investigate whether BHI is associated with bone mineral density (BMD) and prevalent fracture odds in children from the Generation R Study. We also implemented genome-wide association study (GWAS) and polygenic score (PGS) approaches to improve our understanding of BHI and its potential. In total, 4150 children (49.4 % boys; aged 9.8 years) with genotyped data and bone assessments were included in this study. BMD was measured across the total body (less head following ISCD guidelines) using a GE-Lunar iDXA densitometer; and BHI was determined from the hand DXA scans using BoneXpert®. Fractures were self-reported collected with home questionnaires. The association of BHI with BMD and fractures was evaluated using linear models corrected for age, sex, ethnicity, height, and weight. We observed a positive correlation between BHI and BMD (ρ = 0.32, p-value<0.0001). Further, every SD decrease in BHI was associated with an 11 % increased risk of prevalent fractures (OR:1.11, 95 % CI 1.00-1.24, p-value = 0.05). Our BHI GWAS identified variants (lead SNP rs1404264-A, p-value = 2.61 × 10-14) mapping to the ING3/CPED1/WNT16 locus. Children in the extreme tails of the BMD PGS presented a difference in BHI values of -0.10 standard deviations (95% CI -0.14 to -0.07; p-value<0.0001). On top of the demonstrated epidemiological association of BHI with both BMD and fracture risk, our results reveal a partially shared biological background between BHI and BMD. These findings highlight the potential value of using BHI to screen children at risk of fracture.


Assuntos
Densidade Óssea , Fraturas Ósseas , Masculino , Criança , Humanos , Feminino , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/genética , Absorciometria de Fóton/métodos , Osso e Ossos , Proteínas de Homeodomínio , Proteínas Supressoras de Tumor
5.
Trends Endocrinol Metab ; 35(6): 478-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553405

RESUMO

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.


Assuntos
Fenótipo , Animais , Humanos , Músculo Esquelético/metabolismo , Peixe-Zebra , Camundongos , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Doenças Musculoesqueléticas/genética , Osteoporose/metabolismo , Osteoporose/patologia
6.
Arthritis Rheumatol ; 75(10): 1781-1792, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096546

RESUMO

OBJECTIVE: In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors. METHODS: A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors. RESULTS: We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (ß = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects. CONCLUSION: This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Hipertensão , Infarto do Miocárdio , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Aterosclerose/genética , Aterosclerose/complicações , Infarto do Miocárdio/etiologia , Fatores de Risco , Polimorfismo de Nucleotídeo Único
7.
Commun Biol ; 6(1): 691, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402774

RESUMO

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.


Assuntos
Densidade Óssea , Craniossinostoses , Animais , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Peixe-Zebra/genética , Crânio , Craniossinostoses/genética , Fatores de Transcrição/genética
8.
Front Endocrinol (Lausanne) ; 12: 731217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938269

RESUMO

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Doenças Musculoesqueléticas/genética , Animais , Animais Geneticamente Modificados , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/tendências , Humanos , Modelos Animais , Herança Multifatorial/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Fenótipo , Locos de Características Quantitativas , Integração de Sistemas , Estudos de Validação como Assunto
9.
Commun Biol ; 4(1): 1274, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754074

RESUMO

We performed genome-wide association study meta-analysis to identify genetic determinants of skeletal age (SA) deviating in multiple growth disorders. The joint meta-analysis (N = 4557) in two multiethnic cohorts of school-aged children identified one locus, CYP11B1 (expression confined to the adrenal gland), robustly associated with SA (rs6471570-A; ß = 0.14; P = 6.2 × 10-12). rs6410 (a synonymous variant in the first exon of CYP11B1 in high LD with rs6471570), was prioritized for functional follow-up being second most significant and the one closest to the first intron-exon boundary. In 208 adrenal RNA-seq samples from GTEx, C-allele of rs6410 was associated with intron 3 retention (P = 8.11 × 10-40), exon 4 inclusion (P = 4.29 × 10-34), and decreased exon 3 and 5 splicing (P = 7.85 × 10-43), replicated using RT-PCR in 15 adrenal samples. As CYP11B1 encodes 11-ß-hydroxylase, involved in adrenal glucocorticoid and mineralocorticoid biosynthesis, our findings highlight the role of adrenal steroidogenesis in SA in healthy children, suggesting alternative splicing as a likely underlying mechanism.


Assuntos
Processamento Alternativo , Desenvolvimento Ósseo/genética , Esteroide 11-beta-Hidroxilase/genética , Determinação da Idade pelo Esqueleto , Criança , Feminino , Humanos , Masculino , Esteroide 11-beta-Hidroxilase/metabolismo
10.
J Bone Miner Res ; 35(6): 1065-1076, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017184

RESUMO

We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea , Fraturas Ósseas , Osteoporose , RNA não Traduzido/genética , Densidade Óssea/genética , Osso e Ossos , Feminino , Fraturas Ósseas/genética , Humanos , Osteoporose/genética , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA