Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 156: 489-503, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645842

RESUMO

Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Software , Mapeamento Encefálico/métodos , Humanos
2.
Neuroinformatics ; 20(4): 897-917, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297018

RESUMO

Real-time quality assessment (rtQA) of functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) signal changes is critical for neuroimaging research and clinical applications. The losses of BOLD sensitivity because of different types of technical and physiological noise remain major sources of fMRI artifacts. Due to difficulty of subjective visual perception of image distortions during data acquisitions, a comprehensive automatic rtQA is needed. To facilitate rapid rtQA of fMRI data, we applied real-time and recursive quality assessment methods to whole-brain fMRI volumes, as well as time-series of target brain areas and resting-state networks. We estimated recursive temporal signal-to-noise ratio (rtSNR) and contrast-to-noise ratio (rtCNR), and real-time head motion parameters by a framewise rigid-body transformation (translations and rotations) using the conventional current to template volume registration. In addition, we derived real-time framewise (FD) and micro (MD) displacements based on head motion parameters and evaluated the temporal derivative of root mean squared variance over voxels (DVARS). For monitoring time-series of target regions and networks, we estimated the number of spikes and amount of filtered noise by means of a modified Kalman filter. Finally, we applied the incremental general linear modeling (GLM) to evaluate real-time contributions of nuisance regressors (linear trend and head motion). Proposed rtQA was demonstrated in real-time fMRI neurofeedback runs without and with excessive head motion and real-time simulations of neurofeedback and resting-state fMRI data. The rtQA was implemented as an extension of the open-source OpenNFT software written in Python, MATLAB and C++ for neurofeedback, task-based, and resting-state paradigms. We also developed a general Python library to unify real-time fMRI data processing and neurofeedback applications. Flexible estimation and visualization of rtQA facilitates efficient rtQA of fMRI data and helps the robustness of fMRI acquisitions by means of substantiating decisions about the necessity of the interruption and re-start of the experiment and increasing the confidence in neural estimates.


Assuntos
Mapeamento Encefálico , Neurorretroalimentação , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Neurorretroalimentação/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos
3.
Data Brief ; 14: 344-347, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28795112

RESUMO

Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA