Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Scand J Med Sci Sports ; 33(5): 619-630, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36517927

RESUMO

Mechanical overload is considered the main cause of Achilles tendinopathy. In addition to tensile loads, it is believed that the Achilles tendon may also be exposed to compressive loads. However, data on intratendinous pressures are lacking, and consequently, their role in the pathophysiology of tendinopathy is still under debate. Therefore, we aimed to evaluate the intratendinous pressure changes in the Achilles tendon during stretching and eccentric loading. Twelve pairs of human cadaveric legs were mounted in a testing rig, and a miniature pressure catheter was placed through ultrasound-guided insertion in four different regions of the Achilles tendon: the insertion (superficial and deep layers), mid-portion, and proximal portion. Intratendinous pressure was measured during three simulated loading conditions: a bent-knee calf stretch, a straight-knee calf stretch, and an eccentric heel-drop. It was found that the intratendinous pressure increased exponentially in both the insertion and mid-portion regions of the Achilles tendon during each loading condition (p < 0.001). The highest pressures were consistently found in the deep insertion region (p < 0.001) and during the eccentric heel-drop (p < 0.001). Pressures in the mid-portion were also significantly higher than in the proximal portion (p < 0.001). These observations offer novel insights and support a role for compression in the pathophysiology of Achilles tendinopathy by demonstrating high intratendinous pressures at regions where Achilles tendinopathy typically occurs. To what extent managing intratendinous pressure might be successful in patients with Achilles tendinopathy by, for example, avoiding excessive stretching, modifying exercise therapy, and offering heel lifts requires further investigation.


Assuntos
Tendão do Calcâneo , Tendinopatia , Humanos , Tendão do Calcâneo/fisiologia , Calcanhar , Terapia por Exercício , Pressão
2.
Scand J Med Sci Sports ; 33(11): 2230-2238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608446

RESUMO

Torsion of the Achilles tendon (AT) enhances tensile strength, but a high degree of torsion might also be a risk factor for Achilles tendinopathy, due to greater internal compression exerted during tensile loading. However, evidence supporting the grounds for this assumption is lacking. Hence, we aimed to investigate the impact of AT torsion type on intratendinous pressure. Eighteen human fresh frozen cadaveric legs were mounted in a testing rig and a miniature pressure catheter was placed through ultrasound-guided insertion in the midportion region of the AT. Intratendinous pressure was measured during a simulated straight-knee calf stretch and eccentric heel drop. The AT was then carefully dissected and classified into Type I (least), Type II (moderate), and Type III (extreme) torsion. Of the ATs examined, nine were found to have Type I torsion (50%), nine Type II (50%), and none Type III. It was found that the intratendinous pressure of the AT increased exponentially with ankle dorsiflexion during both exercises (p < 0.001) and that this increase was greater in ATs with Type II torsion than Type I torsion (p < 0.05). This study provides the first biomechanical data to support the hypothesis that in athletes with a high degree of torsion in the AT, the midportion area will experience more internal compression during exercise, for example, calf stretching and eccentric heel drops. Whether this phenomenon is also associated with an elevated risk for Achilles tendinopathy needs further prospective investigation.

3.
Br J Sports Med ; 57(16): 1042-1048, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36323498

RESUMO

Despite the high prevalence of tendon pathology in athletes, the underlying pathogenesis is still poorly understood. Various aetiological theories have been presented and rejected in the past, but the tendon cell response model still holds true. This model describes how the tendon cell is the key regulator of the extracellular matrix and how pathology is induced by a failed adaptation to a disturbance of tissue homeostasis. Such failure has been attributed to various kinds of stressors (eg, mechanical, thermal and ischaemic), but crucial elements seem to be missing to fully understand the pathogenesis. Importantly, a disturbance of tissue pressure homeostasis has not yet been considered a possible factor, despite it being associated with numerous pathologies. Therefore, we conducted an extensive narrative literature review on the possible role of intratendinous pressure in the pathogenesis of tendon pathology. This review explores the current understanding of pressure dynamics and the role of tissue pressure in the pathogenesis of other disorders with structural similarities to tendons. By bridging these insights with known structural changes that occur in tendon pathology, a conceptual model was constituted. This model provides an overview of the possible mechanism of how an increase in intratendinous pressure might be involved in the development and progression of tendon pathology and contribute to tendon pain. In addition, some therapies that could reduce intratendinous pressure and accelerate tendon healing are proposed. Further experimental research is encouraged to investigate our hypotheses and to initiate debate on the relevance of intratendinous pressure in tendon pathology.


Assuntos
Tendão do Calcâneo , Tendinopatia , Humanos , Tendinopatia/etiologia , Tendinopatia/patologia , Tendões , Cicatrização , Adaptação Fisiológica , Atletas , Tendão do Calcâneo/patologia
4.
J Arthroplasty ; 38(6S): S374-S378, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828051

RESUMO

BACKGROUND: The accuracy, precision, and repeatability by which the tibial sagittal plane can be found with imageless technology is currently unknown. The purpose of this study was to identify any differences between imageless and image-based technology to define the sagittal plane of the tibia. METHODS: A computed tomography (CT) was obtained of 18 cadavers with the knee fully extended. The surgical trans-epicondylar axis and several tibial rotation references were acquired on the CT scan. After a medial parapatellar approach, the same anatomical landmarks were acquired in vivo. In the horizontal plane, the angle between the surgical trans-epicondylar axis and the tibial rotational axes was assessed. RESULTS: Highest accuracy was found for posterior cruciate ligament (PCL)-anterior cruciate ligament (ACL, -1.48°, standard deviation [SD] 13.64; imageless), tibial medial condyle (TMC)-tibial lateral condyle (TLC, 1.72°, SD 4.24; image-based), the ACL-medial border of tibial tuberosity (MTT, -2.89°, SD 18.86; image-based). Highest precision was acquired with image-based technology: TMC-TLC (SD 4.24), PCL-ACL (SD 5.86), and PCL-medial third of tibial tuberosity (M3TT, SD 7.10). Excellent intraobserver and interobserver correlation coefficients were observed with image-based technology: PCL-MTT, anterior medial condyle (AMC)-anterior lateral condyle (ALC), and TMC-TLC (Intraobserver and interobserver correlation coefficients 0.90-0.98). CONCLUSION: The tibial sagittal plane could be defined with highest accuracy, precision, and repeatability on a preoperative CT. Imageless methodology lacked the precision and repeatability of image-based technology. With the current pursuit of high accuracy and precision in total knee arthroplasty, the reference frame used to quantify implant position should be highly accurate and precise as well. LEVEL OF EVIDENCE: IV, Case Series.


Assuntos
Ligamento Cruzado Posterior , Tíbia , Humanos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamento Cruzado Anterior/cirurgia , Cadáver
5.
Sports Health ; : 19417381241245357, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610105

RESUMO

BACKGROUND: In contrast to other musculoskeletal tissues, the normal pressure behavior of the Achilles tendon is poorly understood. This study aimed to explore the normal intratendinous and perfusion pressures of the Achilles tendon at rest and during exercise, and investigate potential correlations with tendon load and morphology. HYPOTHESIS: Intratendinous and perfusion pressures of the Achilles tendon exhibit similarities to other musculoskeletal tissues and depend on tendon load and morphology. STUDY DESIGN: Observational study. LEVEL OF EVIDENCE: Level 3. METHODS: A total of 22 recreational athletes were enrolled. Demographics, activity level, and blood pressures were recorded. Achilles tendon thickness and echogenicity were assessed 25 mm proximal to the posterosuperior calcaneal border. In this region, intratendinous and perfusion pressures of the Achilles tendon were measured at rest and during isometric plantarflexion up to 50 N, using the microcapillary infusion technique. Linear mixed models were used to investigate the effects of plantarflexion force, tendon thickness, and echogenicity on intratendinous and perfusion pressures. RESULTS: At rest, intratendinous and perfusion pressures of the Achilles tendon were 43.8 ± 15.2 and 48.7 ± 18.4 mmHg, respectively. Intratendinous pressure increased linearly with plantarflexion force, reaching 101.3 ± 25.5 mmHg at 50 N (P < 0.01). Perfusion pressure showed an inverse relationship, dropping below 0 mmHg at 50 N (P < 0.01). Neither intratendinous nor perfusion pressures of the Achilles tendon correlated with tendon thickness or echogenicity. CONCLUSION: The normal intratendinous resting pressure of the Achilles tendon is higher than other musculoskeletal tissues, making it more susceptible to ischemia. During exercise, intratendinous pressure increases significantly to a level that lowers perfusion pressure, thereby compromising blood supply at already low plantarflexion forces. CLINICAL RELEVANCE: Given the potential role of ischemia in Achilles tendinopathy, our findings caution against intratendinous injections, as they may exacerbate high intratendinous resting pressure, and against prolonged postexercise tendon stretching, as the associated rise in intratendinous pressure may impair the required hyperemic response.

6.
J Sport Health Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582138

RESUMO

BACKGROUND: Tendinopathy alters the compositional properties of the Achilles tendon by increasing fluid and glycosaminoglycan content. It has been speculated that these changes may affect intratendinous pressure, but the extent of this relationship remains unclear. Therefore, we aimed to investigate the impact of elevated fluid and glycosaminoglycan content on Achilles tendon intratendinous pressure and to determine whether hyaluronidase (HYAL) therapy can intervene in this potential relationship. METHODS: Twenty paired fresh-frozen cadaveric Achilles tendons were mounted in a tensile-testing machine and loaded up to 5% strain. Intratendinous resting (at 0% strain) and dynamic pressure (at 5% strain) were assessed using the microcapillary infusion technique. First, intratendinous pressure was measured under native conditions before and after infusion of 2 mL physiological saline. Next, 80 mg of glycosaminoglycans were administered bilaterally to the paired tendons. The right tendons were additionally treated with 1500 units of HYAL. Finally, both groups were retested, and the glycosaminoglycan content was analyzed. RESULTS: It was found that both elevated fluid and glycosaminoglycan content resulted in higher intratendinous resting and dynamic pressures (p < 0.001). HYAL treatment induced a 2.3-fold reduction in glycosaminoglycan content (p = 0.002) and restored intratendinous pressures. CONCLUSION: The results of this study demonstrated that elevated fluid and glycosaminoglycan content in Achilles tendinopathy contribute to increased intratendinous resting and dynamic pressures, which can be explained by the associated increased volume and reduced permeability of the tendon matrix, respectively. HYAL degrades glycosaminoglycans sufficiently to lower intratendinous pressures and may, therefore, serve as a promising treatment.

7.
Knee ; 40: 238-244, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521416

RESUMO

BACKGROUND: This paper aimed to evaluate the effects of iliotibial band (ITB) activation and gastrocnemius activation on knee kinematics and stability. A quantitative analysis needs to determine the effect of ITB and gastrocnemius activation in each of the six degrees of freedom of the knee joint. METHODS: Four cadaveric knee specimens were tested during squat motions with physiological loads. The quadriceps and hamstring muscles were activated in each situation. The ITB was intermittently activated using an actuator and a cable pulley system. The gastrocnemius was activated anatomically as part of the triceps surae complex together with the soleus and the plantaris muscle. During the squat motion, the Achilles tendon has increased tension which induced muscle activation in the calf muscles thus creating the activated situation. RESULTS: Introduction of the ITB resulted in a reduced laxity width during extension and an external tibial rotation (2.4°). The femur shifted less posterior in the lateral compartment when the ITB was activated. Activation of gastrocnemius as part of the calf muscles led to an increased laxity width. CONCLUSIONS: Knee stability and knee joint kinematics are affected significantly by the activation of the ITB and the gastrocnemius as part of the triceps surae complex. This points to the importance of muscles and stabilizing tissue structures such as the ITB in the evaluation of knee joint kinematics both in vitro and in vivo.


Assuntos
Articulação do Joelho , Joelho , Humanos , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Fêmur , Músculo Quadríceps , Amplitude de Movimento Articular/fisiologia , Cadáver
8.
Bone Joint Res ; 12(4): 285-293, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067369

RESUMO

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction. The laxity results show that both implants are capable of mimicking the native internal/external-laxity during the controlled lowering phase. The kinematic results show that the bi-cruciate retaining implant tends to approximate the native condition better compared to bi-cruciate stabilized implant. This is valid for the internal/external rotation and the anteroposterior translation during all phases of the stair descent, and for the compression-distraction of the knee joint during swing and controlled lowering phase. The results show a better approximation of the native kinematics by the bi-cruciate retaining knee implant compared to the bi-cruciate stabilized knee implant for internal/external rotation and anteroposterior translation. Whether this will result in better patient outcomes remains to be investigated.

9.
Med Sci Sports Exerc ; 53(9): 1911-1921, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787532

RESUMO

PURPOSE: The aims of this study were 1) to model the temporal profile of W' recovery after exhaustion, 2) to estimate the contribution of changing V˙O2 kinetics to this recovery, and 3) to examine associations with aerobic fitness and muscle fiber type (MFT) distribution. METHODS: Twenty-one men (age = 25 ± 2 yr, V˙O2peak = 54.4 ± 5.3 mL·min-1·kg-1) performed several constant load tests to determine critical power and W' followed by eight trials to quantify W' recovery. Each test consisted of two identical exhaustive work bouts (WB1 and WB2), separated by a variable recovery interval of 30, 60, 120, 180, 240, 300, 600, or 900 s. Gas exchange was measured and muscle biopsies were collected to determine MFT distribution. W' recovery was quantified as observed W' recovery (W'OBS), model-predicted W' recovery (W'BAL), and W' recovery corrected for changing V˙O2 kinetics (W'ADJ). W'OBS and W'ADJ were modeled using mono- and biexponential fitting. Root-mean-square error (RMSE) and Akaike information criterion (∆AICC) were used to evaluate the models' accuracy. RESULTS: The W'BAL model (τ = 524 ± 41 s) was associated with an RMSE of 18.6% in fitting W'OBS and underestimated W' recovery for all durations below 5 min (P < 0.002). Monoexponential modeling of W'OBS resulted in τ = 104 s with RMSE = 6.4%. Biexponential modeling of W'OBS resulted in τ1 = 11 s and τ2 = 256 s with RMSE = 1.7%. W'ADJ was 11% ± 1.5% lower than W'OBS (P < 0.001). ∆AICC scores favored the biexponential model for W'OBS, but not for W'ADJ. V˙O2peak (P = 0.009) but not MFT distribution (P = 0.303) was associated with W'OBS. CONCLUSION: We showed that W' recovery from exhaustion follows a two-phase exponential time course that is dependent on aerobic fitness. The appearance of a fast initial recovery phase was attributed to an enhanced aerobic energy provision resulting from changes in V˙O2 kinetics.


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Adulto , Teste de Esforço , Humanos , Cinética , Masculino , Modelos Biológicos , Adulto Jovem
10.
Nutrients ; 11(12)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771148

RESUMO

Personalised dosing of performance-enhancing food supplements is a hot topic. ß-alanine is currently dosed using a fixed dose; however, evidence suggests that this might favour light compared to heavy subjects. A weight-relative dose seems to reverse this problem. In the present study, a novel dosing strategy was tested. A fragmented dose, composed of a fixed fragment of 800 mg and a weight-relative fragment of 10 mg/kg body weight, was compared to a fixed dose of 1600 mg and a weight-relative dose of 20 mg/kg body weight in a cohort of 20 subjects with a body weight ranging 48-139 kg (79.9 ± 24.4 kg). The results show that, following a fragmented dose, the influence of body weight on the pharmacokinetic response (iAUC) over a 210 min period was absent (r = -0.168; p = 0.478), in contrast to the fixed or weight-relative dose. The pharmacokinetic response also seemed more homogenous (CV% = 26%) following a fragmented dose compared to the fixed (33%) and the weight-relative dose (31%). The primary advantage of the easy-to-calculate fragmented dosing strategy is that it does not systematically favour or impair a certain weight group. Thorough dosage studies are lacking in the current field of sports and food supplements, therefore similar considerations can be made towards other (ergogenic) food supplements.


Assuntos
Peso Corporal , Substâncias para Melhoria do Desempenho/farmacocinética , beta-Alanina/administração & dosagem , beta-Alanina/farmacocinética , Adulto , Carnosina/análise , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA