Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(5): 1215-1228, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000489

RESUMO

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos de Coortes , Humanos , Masculino , Mutação , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
2.
Genes Dev ; 34(3-4): 179-193, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879358

RESUMO

The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinogênese/genética , Diferenciação Celular/genética , Células Epiteliais/citologia , Proteínas Repressoras/metabolismo , Animais , Neoplasias da Mama/genética , Caderinas/genética , Sobrevivência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Ligação Proteica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 120(4): e2216055120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669105

RESUMO

DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.


Assuntos
Dano ao DNA , Animais , Reparo do DNA , Replicação do DNA , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
5.
Blood ; 139(16): 2483-2498, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35020836

RESUMO

NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética
6.
Nucleic Acids Res ; 50(13): 7420-7435, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819193

RESUMO

Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.


Assuntos
Reparo do DNA , Neoplasias , Animais , Cisplatino/uso terapêutico , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
7.
Genes Dev ; 30(12): 1470-80, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27340177

RESUMO

Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Carcinoma Lobular/genética , Carcinoma Lobular/fisiopatologia , Edição de Genes , Glândulas Mamárias Humanas/fisiopatologia , Animais , Sistemas CRISPR-Cas , Caderinas/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica , Genes Supressores de Tumor , Humanos , Camundongos
8.
Prostate ; 83(7): 641-648, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779357

RESUMO

BACKGROUND: Amphicrine prostate carcinoma (AMPC) is a poorly defined subset of prostate cancer in which cells co-express luminal prostate epithelial and neuroendocrine markers. The optimal treatment strategy is unknown. We sought to further characterize the clinical, histomorphologic, and molecular characteristics of AMPC and to identify areas of potential future treatment investigations. METHODS: We retrospectively identified 17 cases of AMPC at a single institution, defined as synaptophysin expression in >70% of cells and co-expression of androgen receptor (AR) signaling markers (either AR, PSA, or NKX3.1) in >50% of cells. Clinical and histologic features of AMPC cases as well as response to treatment and clinical outcomes were described. RESULTS: Five AMPC cases arose de novo in the absence of prior systemic treatment and behaved distinctly from cases that were treatment-emergent. In these de novo cases, despite expression of neuroendocrine markers, prognosis appeared more favorable than high-grade neuroendocrine carcinoma, with two (40%) patients with de novo metastatic disease, universal response to androgen deprivation therapy, and no deaths at a median follow-up of 12.3 months. Treatment-emergent AMPC arose a median of 41.1 months after androgen deprivation therapy initiation and was associated with poor response to therapy. CONCLUSIONS: We show that amphicrine prostate cancer is a unique entity and differs in clinical and molecular features from high-grade neuroendocrine carcinomas of the prostate. Our study highlights the need to recognize AMPC as a unique molecularly defined subgroup of prostate cancer.


Assuntos
Carcinoma Neuroendócrino , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Estudos Retrospectivos , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Androgênios/metabolismo , Androgênios/metabolismo , Próstata/patologia , Carcinoma Neuroendócrino/patologia , Neoplasias de Próstata Resistentes à Castração/patologia
9.
Curr Opin Oncol ; 35(3): 224-230, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966502

RESUMO

PURPOSE OF REVIEW: Personalizing prostate cancer therapy requires germline and tumor molecular tests that predict who will respond to specific treatments and who may not. The review covers molecular testing of DNA damage response pathways, the first biomarker-driven precision target with clinical utility for treatment selection in patients with castration resistant prostate cancer (CRPC). RECENT FINDINGS: Recurrent somatic and germline variants cause deficiency of the mismatch repair (MMR) or homologous recombination (HR) pathways in about a quarter of CRPC patients. In prospective clinical trials, patients with deleterious variants in the MMR pathway more frequently experience a therapeutic response to immune checkpoint inhibitors (ICI). Similarly, somatic and germline events affecting HR predict response to poly(ADP) ribose polymerase inhibitor (PARPi) therapy. Molecular testing of these pathways currently involves assaying for loss of function variants in individual genes and for the genome-wide consequences of repair deficiency. SUMMARY: DNA damage response pathways are the first major area of molecular genetic testing in CRPC settings and offer insights into this new paradigm. Our hope is that eventually an arsenal of molecularly-guided therapies will be developed across many pathways to enable precision medicine options for most men with prostate cancer.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Prospectivos , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Dano ao DNA , Técnicas de Diagnóstico Molecular
10.
Brain ; 145(3): 925-938, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35355055

RESUMO

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Hemimegalencefalia , Malformações do Desenvolvimento Cortical , Encéfalo/patologia , Criança , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patologia , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(49): 31343-31352, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229554

RESUMO

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the IghTer5H∆TM mouse model from IghTer5H mice having a premature termination codon at position +5 in leader exon of IghTer5H allele. This prohibited NMD, and the lack of a transmembrane region (∆TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of IghTer5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the IghTer5H∆TM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Loci Gênicos , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
12.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446306

RESUMO

Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.


Assuntos
Cisplatino , Anemia de Fanconi , Humanos , Animais , Camundongos , Cisplatino/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Camundongos Endogâmicos C57BL , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Mitomicina , Fenótipo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética
13.
Health Care Women Int ; : 1-18, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450643

RESUMO

In this study, we examined health inequalities and the status of women as evidenced in the patterns of population and mortality statistics in fifteen Muslim-populated countries. Based on WHO data, female-to-male ratios were calculated to determine differential gender ratios of population and mortality, using Western gender patterns as a baseline. The socioeconomic contexts of the analysis were the percentage of women in parliaments data by OECD and the Gross National Income Per Capita PPP by the World Bank. The study results indicate that former USSR countries had fewer girls, suggesting gender selection, whilst fewer adult women in the Gulf States population indicate health inequalities. Female children's mortality was under-reported, inferring under-valuing girls. Higher female adult deaths in Egypt, Iran, and the Gulf States show greater discrimination. Women in the richest Muslim countries face more inequalities and less representation in Parliament. The implications of the study are discussed.

14.
Annu Rev Genomics Hum Genet ; 20: 293-307, 2019 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30848956

RESUMO

Lynch syndrome is a hereditary cancer predisposition syndrome caused by germline alterations in the mismatch repair genes and is the most common etiology of hereditary colorectal cancer. While Lynch syndrome was initially defined by the clinical Amsterdam criteria, these criteria lack the sensitivity needed for clinical utility. This review covers the evolution of screening for Lynch syndrome from the use of tumor microsatellite instability and/or somatic alterations in mismatch repair protein expression by immunohistochemistry to the newest methods using next-generation sequencing. Additionally, it discusses the clinical implications of the diagnosis of Lynch syndrome as it affects cancer therapeutics and the role of screening in noncolorectal Lynch-associated cancers. As molecular oncology continues to evolve, it is crucial to remain current on the increasing complexity of Lynch syndrome diagnostics and treatment options.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/genética , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Neoplasias Colorretais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/terapia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Masculino , Mutação , Análise de Sequência de RNA
15.
Oncologist ; 27(12): 1025-1033, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36124727

RESUMO

BACKGROUND: KRAS variant alleles may have differential biological properties which impact prognosis and therapeutic options in pancreatic ductal adenocarcinomas (PDA). MATERIALS AND METHODS: We retrospectively identified patients with advanced PDA who received first-line therapy and underwent blood and/or tumor genomic sequencing at the University of Washington between 2013 and 2020. We examined the incidence of KRAS mutation variants with and without co-occurring PI3K or other genomic alterations and evaluated the association of these mutations with clinicopathological characteristics and survival using a Cox proportional hazards model. RESULTS: One hundred twenty-six patients had genomic sequencing data; KRAS mutations were identified in 111 PDA and included the following variants: G12D (43)/G12V (35)/G12R (23)/other (10). PI3K pathway mutations (26% vs. 8%) and homologous recombination DNA repair (HRR) defects (35% vs. 12.5%) were more common among KRAS G12R vs. non-G12R mutated cancers. Patients with KRAS G12R vs. non-G12R cancers had significantly longer overall survival (OS) (HR 0.55) and progression-free survival (PFS) (HR 0.58), adjusted for HRR pathway co-mutations among other covariates. Within the KRAS G12R group, co-occurring PI3K pathway mutations were associated with numerically shorter OS (HR 1.58), while no effect was observed on PFS. CONCLUSIONS: Patients with PDA harboring KRAS G12R vs. non-G12R mutations have longer survival, but this advantage was offset by co-occurring PI3K alterations. The KRAS/PI3K genomic profile could inform therapeutic vulnerabilities in patients with PDA.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Estudos Retrospectivos , Genômica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
16.
Proc Natl Acad Sci U S A ; 116(52): 26798-26807, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843900

RESUMO

Mutations responsible for inherited disease may act by disrupting normal transcriptional splicing. Such mutations can be difficult to detect, and their effects difficult to characterize, because many lie deep within exons or introns where they may alter splice enhancers or silencers or introduce new splice acceptors or donors. Multiple mutation-specific and genome-wide approaches have been developed to evaluate these classes of mutations. We introduce a complementary experimental approach, cBROCA, which yields qualitative and quantitative assessments of the effects of genomic mutations on transcriptional splicing of tumor suppressor genes. cBROCA analysis is undertaken by deriving complementary DNA (cDNA) from puromycin-treated patient lymphoblasts, hybridizing the cDNA to the BROCA panel of tumor suppressor genes, and then multiplex sequencing to very high coverage. At each splice junction suggested by split sequencing reads, read depths of test and control samples are compared. Significant Z scores indicate altered transcripts, over and above naturally occurring minor transcripts, and comparisons of read depths indicate relative abundances of mutant and normal transcripts. BROCA analysis of genomic DNA suggested 120 rare mutations from 150 families with cancers of the breast, ovary, uterus, or colon, in >600 informative genotyped relatives. cBROCA analysis of their transcripts revealed a wide variety of consequences of abnormal splicing in tumor suppressor genes, including whole or partial exon skipping, exonification of intronic sequence, loss or gain of exonic and intronic splicing enhancers and silencers, complete intron retention, hypomorphic alleles, and combinations of these alterations. Combined with pedigree analysis, cBROCA sequencing contributes to understanding the clinical consequences of rare inherited mutations.

17.
Proc Natl Acad Sci U S A ; 116(23): 11428-11436, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31061129

RESUMO

Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.


Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Androstenos/uso terapêutico , Benzamidas , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Resultado do Tratamento
18.
Am J Hum Genet ; 103(1): 19-29, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29887214

RESUMO

Present guidelines for classification of constitutional variants do not incorporate inferences from mutations seen in tumors, even when these are associated with a specific molecular phenotype. When somatic mutations and constitutional mutations lead to the same molecular phenotype, as for the mismatch repair genes, information from somatic mutations may enable interpretation of previously unclassified variants. To test this idea, we first estimated likelihoods that somatic variants in MLH1, MSH2, MSH6, and PMS2 drive microsatellite instability and characteristic IHC staining patterns by calculating likelihoods of high versus low normalized variant read fractions of 153 mutations known to be pathogenic versus those of 760 intronic passenger mutations from 174 paired tumor-normal samples. Mutations that explained the tumor mismatch repair phenotype had likelihood ratio for high variant read fraction of 1.56 (95% CI 1.42-1.71) at sites with no loss of heterozygosity and of 26.5 (95% CI 13.2-53.0) at sites with loss of heterozygosity. Next, we applied these ratios to 165 missense, synonymous, and splice variants observed in tumors, combining in a Bayesian analysis the likelihood ratio corresponding with the adjusted variant read fraction with pretest probabilities derived from published analyses and public databases. We suggest classifications for 86 of 165 variants: 7 benign, 31 likely benign, 22 likely pathogenic, and 26 pathogenic. These results illustrate that for mismatch repair genes, characterization of tumor mutations permits tumor mutation data to inform constitutional variant classification. We suggest modifications to incorporate molecular phenotype in future variant classification guidelines.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Mutação/genética , Neoplasias/genética , Predisposição Genética para Doença/genética , Heterozigoto , Humanos , Instabilidade de Microssatélites , Fenótipo
19.
Oncologist ; 26(2): e270-e278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33215787

RESUMO

BACKGROUND: Genomic biomarkers that predict response to anti-PD1 therapy in prostate cancer are needed. Frameshift mutations are predicted to generate more neoantigens than missense mutations; therefore, we hypothesized that the number or proportion of tumor frameshift mutations would correlate with response to anti-PD1 therapy in prostate cancer. METHODS: To enrich for response to anti-PD1 therapy, we assembled a multicenter cohort of 65 men with mismatch repair-deficient (dMMR) prostate cancer. Patient characteristics and outcomes were determined by retrospective chart review. Clinical somatic DNA sequencing was used to determine tumor mutational burden (TMB), frameshift mutation burden, and frameshift mutation proportion (FSP), which were correlated to outcomes on anti-PD1 treatment. We subsequently used data from a clinical trial of pembrolizumab in patients with nonprostatic dMMR cancers of various histologies as a biomarker validation cohort. RESULTS: Nineteen of 65 patients with dMMR metastatic castration-resistant prostate cancer were treated with anti-PD1 therapy. The PSA50 response rate was 65%, and the median progression-free survival (PFS) was 24 (95% confidence interval 16-54) weeks. Tumor FSP, more than overall TMB, correlated most strongly with prolonged PFS and overall survival (OS) on anti-PD1 treatment and with density of CD8+ tumor-infiltrating lymphocytes. High FSP similarly identified patients with longer PFS as well as OS on anti-PD1 therapy in a validation cohort. CONCLUSION: Tumor FSP correlated with prolonged efficacy of anti-PD1 treatment among patients with dMMR cancers and may represent a new biomarker of immune checkpoint inhibitor sensitivity. IMPLICATIONS FOR PRACTICE: Given the modest efficacy of immune checkpoint inhibition (ICI) in unselected patients with advanced prostate cancer, biomarkers of ICI sensitivity are needed. To facilitate biomarker discovery, a cohort of patients with DNA mismatch repair-deficient (dMMR) prostate cancer was assembled, as these patients are enriched for responses to ICI. A high response rate to anti-PD1 therapy in these patients was observed; however, these responses were not durable in most patients. Notably, tumor frameshift mutation proportion (FSP) was identified as a novel biomarker that was associated with prolonged response to anti-PD1 therapy in this cohort. This finding was validated in a separate cohort of patients with nonprostatic dMMR cancers of various primary histologies. This works suggests that FSP predicts response to anti-PD1 therapy in dMMR cancers, which should be validated prospectively in larger independent cohorts.


Assuntos
Antineoplásicos Imunológicos , Neoplasias da Próstata , Biomarcadores Tumorais/genética , Reparo de Erro de Pareamento de DNA/genética , Mutação da Fase de Leitura , Humanos , Imunoterapia , Masculino , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Estudos Retrospectivos
20.
Gynecol Oncol ; 160(1): 161-168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33393477

RESUMO

OBJECTIVE: Lynch syndrome is the most common cause of inherited endometrial cancer, attributable to germline pathogenic variants (PV) in mismatch repair (MMR) genes. Tumor microsatellite instability (MSI-high) and MMR IHC abnormalities are characteristics of Lynch syndrome. Double somatic MMR gene PV also cause MSI-high endometrial cancers. The aim of this study was to determine the relative frequency of Lynch syndrome and double somatic MMR PV. METHODS: 341 endometrial cancer patients enrolled in the Ohio Colorectal Cancer Prevention Initiative at The Ohio State University Comprehensive Cancer Center from 1/1/13-12/31/16. All tumors underwent immunohistochemical (IHC) staining for the four MMR proteins, MSI testing, and MLH1 methylation testing if the tumor was MMR-deficient (dMMR). Germline genetic testing for Lynch syndrome was undertaken for all cases with dMMR tumors lacking MLH1 methylation. Tumor sequencing followed if a germline MMR gene PV was not identified. RESULTS: Twenty-seven percent (91/341) of tumors were either MSI-high or had abnormal IHC indicating dMMR. As expected, most dMMR tumors had MLH1 methylation; (69, 75.8% of the dMMR cases; 20.2% of total). Among the 22 (6.5%) cases with dMMR not explained by methylation, 10 (2.9% of total) were found to have Lynch syndrome (6 MSH6, 3 MSH2, 1 PMS2). Double somatic MMR PV accounted for the remaining 12 dMMR cases (3.5% of total). CONCLUSIONS: Since double somatic MMR gene PV are as common as Lynch syndrome among endometrial cancer patients, paired tumor and germline testing for patients with non-methylated dMMR tumor may be the most efficient approach for LS screening.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA , Feminino , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética , Estadiamento de Neoplasias , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA