Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chromosoma ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728741

RESUMO

Mitosis is an essential process in which the duplicated genome is segregated equally into two daughter cells. CTCF has been reported to be present in mitosis and has a role in localizing CENP-E, but its importance for mitotic fidelity remains to be determined. To evaluate the importance of CTCF in mitosis, we tracked mitotic behaviors in wild-type and two different CTCF CRISPR-based genetic knockdowns. We find that knockdown of CTCF results in prolonged mitoses and failed anaphase segregation via time-lapse imaging of SiR-DNA. CTCF knockdown did not alter cell cycling or the mitotic checkpoint, which was activated upon nocodazole treatment. Immunofluorescence imaging of the mitotic spindle in CTCF knockdowns revealed disorganization via tri/tetrapolar spindles and chromosomes behind the spindle pole. Imaging of interphase nuclei showed that nuclear size increased drastically, consistent with failure to divide the duplicated genome in anaphase. Long-term inhibition of CNEP-E via GSK923295 recapitulates CTCF knockdown abnormal mitotic spindles with polar chromosomes and increased nuclear sizes. Population measurements of nuclear shape in CTCF knockdowns do not display decreased circularity or increased nuclear blebbing relative to wild-type. However, failed mitoses do display abnormal nuclear morphologies relative to successful mitoses, suggesting that population images do not capture individual behaviors. Thus, CTCF is important for both proper metaphase organization and anaphase segregation which impacts the size and shape of the interphase nucleus likely through its known role in recruiting CENP-E.

2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352548

RESUMO

Plants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging. Indeed, studies of disparate grasses report a ring of thickened, sclerenchyma cells surrounding the root cortex, present only at the base of nodal roots. Here, in the investigation of the development and regulation of this agronomically important trait, we show that development of these cells is uncoupled from the maturation of other secondary cell wall-fortified cells, and that cortical sclerenchyma wall thickening is stimulated by mechanical forces transduced from the shoot to the root. We also show that exogenous application of gibberellic acid stimulates thickening of lignified cell types in the root, including cortical sclerenchyma, but is not sufficient to establish sclerenchyma identity in cortex cells. Leveraging the ability to manipulate cortex development via mechanical stimulus, we show that cortical sclerenchyma development alters root mechanical properties and improves resistance to lodging. We describe transcriptome changes associated with cortical sclerenchyma development under both ambient and mechanically stimulated conditions and identify SECONDARY WALL NAC7 as a putative regulator of mechanically responsive cortex cell wall development at the root base.

3.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712070

RESUMO

Mitosis is an essential process in which the duplicated genome is segregated equally into two daughter cells. CTCF has been reported to be present in mitosis but its importance for mitotic fidelity remains to be determined. To evaluate the importance of CTCF in mitosis, we tracked mitotic behaviors in wild type and two different CTCF CRISPR-based genetic knockdowns. We find that knockdown of CTCF results in prolonged mitoses and failed anaphase segregation via time lapse imaging of SiR-DNA. CTCF knockdown did not alter cell cycling or the mitotic checkpoint, which was activated upon nocodazole treatment. Immunofluorescence imaging of the mitotic spindle in CTCF knockdowns revealed disorganization via tri/tetrapolar spindles and chromosomes behind the spindle pole. Imaging of interphase nuclei showed that nuclear size increased drastically, consistent with failure to divide the duplicated genome in anaphase. Population measurements of nuclear shape in CTCF knockdowns do not display decreased circularity or increased nuclear blebbing relative to wild type. However, failed mitoses do display abnormal nuclear morphologies relative to successful mitoses, suggesting population images do not capture individual behaviors. Thus, CTCF is important for both proper metaphase organization and anaphase segregation which impacts the size and shape of the interphase nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA