Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010605, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666770

RESUMO

Wild waterbirds, the natural reservoirs for avian influenza viruses, undergo migratory movements each year, connecting breeding and wintering grounds within broad corridors known as flyways. In a continental or global view, the study of virus movements within and across flyways is important to understanding virus diversity, evolution, and movement. From 2015 to 2017, we sampled waterfowl from breeding (Maine) and wintering (Maryland) areas within the Atlantic Flyway (AF) along the east coast of North America to investigate the spatio-temporal trends in persistence and spread of influenza A viruses (IAV). We isolated 109 IAVs from 1,821 cloacal / oropharyngeal samples targeting mallards (Anas platyrhynchos) and American black ducks (Anas rubripes), two species having ecological and conservation importance in the flyway that are also host reservoirs of IAV. Isolates with >99% nucleotide similarity at all gene segments were found between eight pairs of birds in the northern site across years, indicating some degree of stability among genome constellations and the possibility of environmental persistence. No movement of whole genome constellations were identified between the two parts of the flyway, however, virus gene flow between the northern and southern study locations was evident. Examination of banding records indicate direct migratory waterfowl movements between the two locations within an annual season, providing a mechanism for the inferred viral gene flow. Bayesian phylogenetic analyses provided evidence for virus dissemination from other North American wild birds to AF dabbling ducks (Anatinae), shorebirds (Charidriformes), and poultry (Galliformes). Evidence was found for virus dissemination from shorebirds to gulls (Laridae), and dabbling ducks to shorebirds and poultry. The findings from this study contribute to the understanding of IAV ecology in waterfowl within the AF.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Teorema de Bayes , Aves , Patos , Vírus da Influenza A/genética , América do Norte , Filogenia , Aves Domésticas
2.
Conserv Biol ; 38(4): e14284, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38785034

RESUMO

Contemporary wildlife disease management is complex because managers need to respond to a wide range of stakeholders, multiple uncertainties, and difficult trade-offs that characterize the interconnected challenges of today. Despite general acknowledgment of these complexities, managing wildlife disease tends to be framed as a scientific problem, in which the major challenge is lack of knowledge. The complex and multifactorial process of decision-making is collapsed into a scientific endeavor to reduce uncertainty. As a result, contemporary decision-making may be oversimplified, rely on simple heuristics, and fail to account for the broader legal, social, and economic context in which the decisions are made. Concurrently, scientific research on wildlife disease may be distant from this decision context, resulting in information that may not be directly relevant to the pertinent management questions. We propose reframing wildlife disease management challenges as decision problems and addressing them with decision analytical tools to divide the complex problems into more cognitively manageable elements. In particular, structured decision-making has the potential to improve the quality, rigor, and transparency of decisions about wildlife disease in a variety of systems. Examples of management of severe acute respiratory syndrome coronavirus 2, white-nose syndrome, avian influenza, and chytridiomycosis illustrate the most common impediments to decision-making, including competing objectives, risks, prediction uncertainty, and limited resources.


Replanteamiento del manejo de problemas por enfermedades de fauna mediante el análisis de decisiones Resumen El manejo actual de las enfermedades de la fauna es complejo debido a que los gestores necesitan responder a una amplia gama de actores, varias incertidumbres y compensaciones difíciles que caracterizan los retos interconectados del día de hoy. A pesar de que en general se reconocen estas complejidades, el manejo de las enfermedades tiende a plantearse como un problema científico en el que el principal obstáculo es la falta de conocimiento. El proceso complejo y multifactorial de la toma decisiones está colapsado dentro de un esfuerzo científico para reducir la incertidumbre. Como resultado de esto, las decisiones contemporáneas pueden estar simplificadas en exceso, depender de métodos heurísticos simples y no considerar el contexto legal, social y económico más amplio en el que se toman las decisiones. De manera paralela, las investigaciones científicas sobre las enfermedades de la fauna pueden estar lejos de este contexto de decisiones, lo que deriva en información que puede no ser directamente relevante para las preguntas pertinentes de manejo. Proponemos replantear los obstáculos para el manejo de enfermedades de fauna como problemas de decisión y abordarlos con herramientas analíticas de decisión para dividir los problemas complejos en elementos más manejables de manera cognitiva. En particular, las decisiones estructuradas tienen el potencial de mejorar la calidad, el rigor y la transparencia de las decisiones sobre las enfermedades de la fauna en una variedad de sistemas. Ejemplos como el manejo del coronavirus del síndrome de respiración agudo tipo 2, el síndrome de nariz blanca, la influenza aviar y la quitridiomicosis ilustran los impedimentos más comunes para la toma de decisiones, incluyendo los objetivos en competencia, riesgos, incertidumbre en las predicciones y recursos limitados.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Tomada de Decisões , Técnicas de Apoio para a Decisão , Animais , Conservação dos Recursos Naturais/métodos , COVID-19/epidemiologia , SARS-CoV-2 , Incerteza
3.
Ecol Lett ; 26(10): 1780-1791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586885

RESUMO

Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.


Assuntos
Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Ecologia , Europa (Continente)/epidemiologia
4.
Ecol Appl ; 33(7): e2906, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37522765

RESUMO

Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A-positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/epidemiologia , Aves , Aves Domésticas , Animais Selvagens
5.
Avian Pathol ; 52(3): 219-228, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36999798

RESUMO

Highly pathogenic (HP) avian influenza viruses (AIVs) of the clade 2.3.4.4 goose/Guangdong/1996 H5 lineage continue to be a problem in poultry and wild birds in much of the world. The recent incursion of a H5N1 clade 2.3.4.4b HP AIV from this lineage into North America has resulted in widespread outbreaks in poultry and consistent detections of the virus across diverse families of birds and occasionally mammals. To characterize the pathobiology of this virus in mallards (Anas platyrhynchos), which are a primary reservoir of AIV, a challenge study was conducted with 2-week-old birds. The 50% bird infectious dose was determined to be < 2 log10 50% egg infectious doses (EID50) and all exposed ducks, including ducks co-housed with inoculated ducks, were infected. Infection appeared to be subclinical for 58.8% (20/34) of the ducks, one duck was lethargic, about 20% developed neurological signs and were euthanized, and 18% developed corneal opacity. The mallards shed virus by both the oral and cloacal routes within 24-48 h post-infection. Oral shedding substantially decreased by 6-7 days post-infection, but 65% of the ducks continued to shed virus cloacally through 14 days post-exposure (DPE) for the direct inoculates and 13 DPE for contact-exposed ducks. Based on the high transmissibility, high virus shed titres, and mild-to-moderate disease, mallards could serve as efficient reservoirs to amplify and disseminate recent North American clade 2.3.4.4b viruses.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Patos , Animais Selvagens , Aves Domésticas , Mamíferos
6.
Proc Biol Sci ; 289(1982): 20221312, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36069010

RESUMO

Environmental contamination is widespread and can negatively impact wildlife health. Some contaminants, including heavy metals, have immunosuppressive effects, but prior studies have rarely measured contamination and disease simultaneously, which limits our understanding of how contaminants and pathogens interact to influence wildlife health. Here, we measured mercury concentrations, influenza infection, influenza antibodies and body condition in 749 individuals from 11 species of wild ducks overwintering in California. We found that the odds of prior influenza infection increased more than fivefold across the observed range of blood mercury concentrations, while accounting for species, age, sex and date. Influenza infection prevalence was also higher in species with higher average mercury concentrations. We detected no relationship between influenza infection and body fat content. This positive relationship between influenza prevalence and mercury concentrations in migratory waterfowl suggests that immunotoxic effects of mercury contamination could promote the spread of avian influenza along migratory flyways, especially if influenza has minimal effects on bird health and mobility. More generally, these results show that the effects of environmental contamination could extend beyond the geographical area of contamination itself by altering the prevalence of infectious diseases in highly mobile hosts.


Assuntos
Influenza Aviária , Influenza Humana , Mercúrio , Animais , Animais Selvagens , Anticorpos Antivirais , Aves , Patos , Humanos , Influenza Aviária/epidemiologia , Mercúrio/toxicidade , Prevalência
7.
Proc Biol Sci ; 287(1934): 20201680, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901574

RESUMO

In this investigation, we used a combination of field- and laboratory-based approaches to assess if influenza A viruses (IAVs) shed by ducks could remain viable for extended periods in surface water within three wetland complexes of North America. In a field experiment, replicate filtered surface water samples inoculated with duck swabs were tested for IAVs upon collection and again after an overwintering period of approximately 6-7 months. Numerous IAVs were molecularly detected and isolated from these samples, including replicates maintained at wetland field sites in Alaska and Minnesota for 181-229 days. In a parallel laboratory experiment, we attempted to culture IAVs from filtered surface water samples inoculated with duck swabs from Minnesota each month during September 2018-April 2019 and found monthly declines in viral viability. In an experimental challenge study, we found that IAVs maintained in filtered surface water within wetlands of Alaska and Minnesota for 214 and 226 days, respectively, were infectious in a mallard model. Collectively, our results support surface waters of northern wetlands as a biologically important medium in which IAVs may be both transmitted and maintained, potentially serving as an environmental reservoir for infectious IAVs during the overwintering period of migratory birds.


Assuntos
Patos/virologia , Vírus da Influenza A , Influenza Aviária/virologia , Áreas Alagadas , Animais , América do Norte
8.
Conserv Biol ; 34(2): 416-426, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31268188

RESUMO

Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration-network connectivity and the impacts of site loss are not completely understood. We used GPS tracking data on 4 bird species in the Asian flyways to construct migration networks and proposed a framework for assessing network connectivity for migratory species. We used a node-removal process to identify stopover sites with the highest impact on connectivity. In general, migration networks with fewer stopover sites were more vulnerable to habitat loss. Node removal in order from the highest to lowest degree of habitat loss yielded an increase of network resistance similar to random removal. In contrast, resistance increased more rapidly when removing nodes in order from the highest to lowest betweenness value (quantified by the number of shortest paths passing through the specific node). We quantified the risk of migration network collapse and identified crucial sites by first selecting sites with large contributions to network connectivity and then identifying which of those sites were likely to be removed from the network (i.e., sites with habitat loss). Among these crucial sites, 42% were not designated as protected areas. Setting priorities for site protection should account for a site's position in the migration network, rather than only site-specific characteristics. Our framework for assessing migration-network connectivity enables site prioritization for conservation of migratory species.


Un Enfoque de Redes para Priorizar los Esfuerzos de Conservación para las Aves Migratorias Resumen La pérdida del hábitat puede disparar el colapso de las redes de migración al aislar los sitios de reproducción de las aves migratorias de aquellos sitios que no se usan para la reproducción. En teoría, la pérdida del hábitat puede tener impactos muy diferentes dependiendo de la importancia del sitio dentro del corredor migratorio. Sin embargo, la conectividad entre las redes de migración y los impactos de la pérdida de los sitios no están del todo comprendidos. Usamos los datos de seguimiento por GPS de cuatro especies de aves en las rutas de vuelo de Asia para construir redes de migración y propusimos un marco de trabajo para evaluar la conectividad de las redes en las especies migratorias. Usamos un proceso de extracción de nodos para identificar los sitios de escala con el mayor impacto sobre la conectividad. En general, las redes de migración con menos sitios de escala fueron más vulnerables a la pérdida del hábitat. La extracción de nodos en orden del grado más alto al más bajo resultó en un incremento de resistencia de la red similar a la extracción al azar. Al contrario, la resistencia incrementó más rápidamente cuando la extracción de los nodos fue en orden del más alto al más bajo valor de intermediación (cuantificado por el número de caminos más cortos que pasan por un nodo específico). Cuantificamos el riesgo de colapso de la red de migración e identificamos sitios cruciales al seleccionar primero los sitios con mayores contribuciones a la conectividad de la red y después identificar cuáles de esos sitios tenían probabilidad de ser removidos de la red (es decir, sitios con pérdida de hábitat). Entre estos sitios cruciales, el 42% no estaban designados como áreas protegidas. El establecimiento de prioridades para la protección de un sitio debería considerar la posición del sitio dentro de la red de migración, en lugar de sólo considerar las características específicas del sitio. Nuestro marco de trabajo para la evaluación de la conectividad de la red de migración permite la priorización de sitios para la conservación de las especies migratorias.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Animais , Aves , Cruzamento , Ecossistema
9.
BMC Vet Res ; 16(1): 351, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967673

RESUMO

BACKGROUND: Aquatic waterfowl, particularly those in the order Anseriformes and Charadriiformes, are the ecological reservoir of avian influenza viruses (AIVs). Dabbling ducks play a recognized role in the maintenance and transmission of AIVs. Furthermore, the pathogenesis of highly pathogenic AIV (HPAIV) in dabbling ducks is well characterized. In contrast, the role of diving ducks in HPAIV maintenance and transmission remains unclear. In this study, the pathogenesis of a North American A/Goose/1/Guangdong/96-lineage clade 2.3.4.4 group A H5N2 HPAIV, A/Northern pintail/Washington/40964/2014, in diving sea ducks (surf scoters, Melanitta perspicillata) was characterized. RESULTS: Intrachoanal inoculation of surf scoters with A/Northern pintail/Washington/40964/2014 (H5N2) HPAIV induced mild transient clinical disease whilst concomitantly shedding high virus titers for up to 10 days post-inoculation (dpi), particularly from the oropharyngeal route. Virus shedding, albeit at low levels, continued to be detected up to 14 dpi. Two aged ducks that succumbed to HPAIV infection had pathological evidence for co-infection with duck enteritis virus, which was confirmed by molecular approaches. Abundant HPAIV antigen was observed in visceral and central nervous system organs and was associated with histopathological lesions. CONCLUSIONS: Collectively, surf scoters, are susceptible to HPAIV infection and excrete high titers of HPAIV from the respiratory and cloacal tracts whilst being asymptomatic. The susceptibility of diving sea ducks to H5 HPAIV highlights the need for additional research and surveillance to further understand the contribution of diving ducks to HPAIV ecology.


Assuntos
Patos , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/virologia , Animais , Antígenos Virais , Coinfecção/veterinária , Coinfecção/virologia , Feminino , Infecções por Herpesviridae/veterinária , Influenza Aviária/patologia , Masculino , Mardivirus/isolamento & purificação , Eliminação de Partículas Virais
10.
PLoS Comput Biol ; 14(9): e1006439, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212472

RESUMO

In Bangladesh, the poultry industry is an economically and socially important sector, but it is persistently threatened by the effects of H5N1 highly pathogenic avian influenza. Thus, identifying the optimal control policy in response to an emerging disease outbreak is a key challenge for policy-makers. To inform this aim, a common approach is to carry out simulation studies comparing plausible strategies, while accounting for known capacity restrictions. In this study we perform simulations of a previously developed H5N1 influenza transmission model framework, fitted to two separate historical outbreaks, to assess specific control objectives related to the burden or duration of H5N1 outbreaks among poultry farms in the Dhaka division of Bangladesh. In particular, we explore the optimal implementation of ring culling, ring vaccination and active surveillance measures when presuming disease transmission predominately occurs from premises-to-premises, versus a setting requiring the inclusion of external factors. Additionally, we determine the sensitivity of the management actions under consideration to differing levels of capacity constraints and outbreaks with disparate transmission dynamics. While we find that reactive culling and vaccination policies should pay close attention to these factors to ensure intervention targeting is optimised, across multiple settings the top performing control action amongst those under consideration were targeted proactive surveillance schemes. Our findings may advise the type of control measure, plus its intensity, that could potentially be applied in the event of a developing outbreak of H5N1 amongst originally H5N1 virus-free commercially-reared poultry in the Dhaka division of Bangladesh.


Assuntos
Galinhas/virologia , Surtos de Doenças/veterinária , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Aves Domésticas/virologia , Animais , Bangladesh/epidemiologia , Controle de Doenças Transmissíveis , Simulação por Computador , Geografia , Política de Saúde , Influenza Aviária/diagnóstico , Modelos Teóricos
11.
Proc Natl Acad Sci U S A ; 112(1): 172-7, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535385

RESUMO

The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.


Assuntos
Migração Animal , Aves/virologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/virologia , Animais , Ásia/epidemiologia , Aves/genética , Surtos de Doenças/estatística & dados numéricos , Fluxo Gênico , Redes Reguladoras de Genes , Geografia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/transmissão , Filogenia , Estatística como Assunto , Fatores de Tempo
12.
Korean J Parasitol ; 54(5): 685-691, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853128

RESUMO

Chewing lice (Phthiraptera) that parasitize the globally threatened swan goose Anser cygnoides have been long recognized since the early 19th century, but those records were probably biased towards sampling of captive or domestic geese due to the small population size and limited distribution of its wild hosts. To better understand the lice species parasitizing swan geese that are endemic to East Asia, we collected chewing lice from 14 wild geese caught at 3 lakes in northeastern Mongolia. The lice were morphologically identified as 16 Trinoton anserinum (Fabricius, 1805), 11 Ornithobius domesticus Arnold, 2005, and 1 Anaticola anseris (Linnaeus, 1758). These species are known from other geese and swans, but all of them were new to the swan goose. This result also indicates no overlap in lice species between older records and our findings from wild birds. Thus, ectoparasites collected from domestic or captive animals may provide biased information on the occurrence, prevalence, host selection, and host-ectoparasite interactions from those on wild hosts.


Assuntos
Doenças das Aves/parasitologia , Gansos , Infestações por Piolhos/veterinária , Ftirápteros/anatomia & histologia , Ftirápteros/classificação , Animais , Infestações por Piolhos/parasitologia , Microscopia , Mongólia
13.
J Wildl Dis ; 60(4): 940-949, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005143

RESUMO

Scaup, including both Lesser and Greater (Aythya affinis and Aythya marila, respectively), are a grouping of populous and widespread North American diving ducks. Few influenza type A viruses (IAV) have been reported from these species despite a high prevalence of antibodies to IAV being reported. Existing virologic and serologic data indicate that IAV infection routinely occurs in scaup, yet it is unknown which IAV subtypes are linked to these infections. In this study, we aimed to gain a more complete picture of IAV natural history in Lesser and Greater Scaup from two coastal flyways in North America in 2015-18 (302 samples from California in the Pacific Flyway and 471 samples from Maryland in the Atlantic Flyway). Low prevalence of active IAV infection was detected by real-time reverse-transcription PCR in Lesser Scaup sampled in Maryland and California (2.8% and 8.1%, respectively). A single IAV (H1N1) was isolated in embryonated chicken eggs from a bird sampled in California. Similarly low levels were observed in Greater Scaup in California (3.3%). Antibodies to the nucleoprotein as detected with a commercial blocking ELISA were observed in all species and flyway combinations. Antibody seroprevalence estimates were higher in adult Lesser Scaup than in juveniles at both the ≤0.5 (P<0.001, z=-3.582) and ≤0.7 serum-sample-to-negative-control absorbance thresholds (P=0.003, z=-2.996). Neutralizing antibodies to H1-H12, H14, and H15 were detected using a microtiter virus neutralization assay, with the highest prevalence of antibodies against H1 (38%), H6 (36%), and H11 (35%). The high prevalence of antibodies to IAV and evidence of previous exposure to numerous subtypes are consistent with a high level of population immunity and a low prevalence of infection. These results must be interpreted in the context of season (winter sampling), as results may vary with the annual influx of naïve juvenile birds.


Assuntos
Anticorpos Antivirais , Vírus da Influenza A , Influenza Aviária , Animais , Vírus da Influenza A/imunologia , Anticorpos Antivirais/sangue , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Estudos Soroepidemiológicos , California/epidemiologia , Feminino , Masculino
14.
Sci Rep ; 14(1): 14199, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902400

RESUMO

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Assuntos
Animais Selvagens , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Aves Domésticas , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Animais Selvagens/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Surtos de Doenças/veterinária , Aves Domésticas/virologia , Aves/virologia , Estados Unidos/epidemiologia , Filogenia , Migração Animal
15.
PLoS Pathog ; 7(3): e1001308, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21408202

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance positives in 2007-2009 appeared to have had lower antibody response to vaccination. The distribution of HPAI H5N1 risk in China appears more limited geographically than previously assessed, offering prospects for better targeted surveillance and control interventions.


Assuntos
Galinhas/virologia , Surtos de Doenças , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , China/epidemiologia , Geografia , Humanos , Modelos Logísticos , Densidade Demográfica , Fatores de Risco
17.
Sci Rep ; 13(1): 14473, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660131

RESUMO

Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Estações do Ano , Patos , Animais Selvagens , América do Norte/epidemiologia
18.
Transbound Emerg Dis ; 69(5): 2898-2912, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34974641

RESUMO

Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl-livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl-domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks.


Assuntos
Doenças dos Bovinos , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Bovinos , Patos , Humanos , Gado , Aves Domésticas , Água , Áreas Alagadas
19.
Transbound Emerg Dis ; 69(5): e2653-e2660, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35678746

RESUMO

Despite the recognized role of wild waterfowl in the potential dispersal and transmission of highly pathogenic avian influenza (HPAI) virus, little is known about how infection affects these birds. This lack of information limits our ability to estimate viral spread in the event of an HPAI outbreak, thereby limiting our abilities to estimate and communicate risk. Here, we present telemetry data from a wild Lesser Scaup (Aythya affinis), captured during a separate ecology study in the Chesapeake Bay, Maryland. This bird tested positive for infection with clade 2.3.4.4 HPAI virus of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 lineage (results received post-release) during the 2021-2022 ongoing outbreaks in North America. While the infected bird was somewhat lighter than other adult males surgically implanted with transmitters (790 g, x̅ = 868 g, n = 11), it showed no clinical signs of infection at capture, during surgery, nor upon release. The bird died 3 days later-pathology undetermined as the specimen was not able to be recovered. Analysis of movement data within the 3-day window showed that the infected individual's maximum and average hourly movements (3894.3 and 428.8 m, respectively) were noticeably lower than noninfected conspecifics tagged and released the same day (x̅ = 21,594.5 and 1097.9 m, respectively; n = 4). We identified four instances where the infected bird had close contact (fixes located within 25 m and 15 min) with another marked bird during this time. Collectively, these data suggest that the HPAI-positive bird observed in this study may have been shedding virus for some period prior to death, with opportunities for direct bird-to-bird or environmental transmission. Although limited by low sample size and proximity to the time of tagging, we hope that these data will provide useful information as managers continue to respond to this ongoing outbreak event.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Patos , Masculino
20.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906292

RESUMO

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Assuntos
Vírus da Influenza A , Influenza Aviária , Migração Animal , Animais , Animais Selvagens , Patos , Humanos , Influenza Aviária/epidemiologia , Prevalência , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA