Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(20): 5003-5010, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314484

RESUMO

Cu2+ are ubiquitous ions in the ecosystem and are responsible of serious environmental pollution. Indeed, the development of sensitive methods for Cu2+ detection is an urgent demand. In this work, we proposed a new spectrophotometric method for Cu2+ determination in different water matrices (distilled water, drinking water, wastewater, and river water). The method employs a bio-based organic ligand namely tetrasodium iminodisuccinate (IDS) able to form a stable complex with the analyte with a maximum absorption at 710 nm. Within the linear range of 6.3-381 mg L-1, the limit of detection (LOD) was determined to be as 1.43 mg L-1. Moreover, the recovery data of the spiked analysis of drinking/river/wastewater water samples were also satisfactory and verified the feasibility of the method for the analysis of Cu2+ in natural conditions. Finally, the AGREE assessment tool was used for a quantitative evaluation of the proposed method and reference method, in agreement with the green analytical chemistry principles. The results showed the lower environmental impact of the proposed method and the suitability of this novel approach for Cu2+ in water matrices.

2.
J Environ Manage ; 340: 117950, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094386

RESUMO

Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.


Assuntos
Esgotos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução
3.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838603

RESUMO

In the present work, the microclimatic conditions (temperature (T), relative humidity (RH), and illuminance (I)), together with the air quality (both aerosol particulate matter (PM) and gaseous pollutants), were monitored to evaluate the environmental conditions inside the Santuario della Beata Vergine dei Miracoli in Saronno (VA), a masterpiece of the Italian Renaissance. For this purpose, dataloggers were used to carry out the T, RH, and I measurements, whereas an optical particle counter (OPC) was employed to perform the particle count and determine the concentration of the aerosol PM. Finally, diffusive passive samplers were used to determine the concentration of nitrogen dioxide (NO2) and BTEX (benzene, toluene, ethylbenzene, and xylenes). To identify possible spatial variations, the studies were conducted at different sites and different heights in the Sanctuary. Particular focus was given to the Easter week during which liturgical services attracting large numbers of people were carried out. Additionally, a comparison with the outdoor values was performed to highlight the accumulation phenomena and other variations in the concentrations of the species. Despite the indoor concentrations of pollutants and variations in the thermohygrometric parameters being generally lower compared to the outdoors (e.g., 5.2-15.0 µg m-3 versus 17.7-45.3 µg m-3 for NO2), the microclimatic conditions were often not in line with the Italian legislation and technical standards.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise
4.
Anal Chem ; 89(21): 11413-11418, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28901738

RESUMO

This paper is the first study focused on the innovative application of 13C NMR (nuclear magnetic resonance) spectroscopy to determine the bulk 13C/12C carbon isotope ratio, at natural abundance, in inorganic carbonates and bicarbonates. In the past, 13C NMR spectroscopy (irm-13C NMR) was mainly used to measure isotope ratio monitoring with the potential of conducting 13C position-specific isotope analysis of organic molecules with high precision. The reliability of the newly developed methodology for the determination of stable carbon isotope ratio was evaluated in comparison with the method chosen in the past for these measurements, i.e., isotope ratio mass spectrometry (IRMS), with very encouraging results. We determined the 13C/12C ratio of carbonates and bicarbonates (∼50-100 mg) with a precision on the order of 1‰ in the presence of a relaxation agent, such as Cr(acac)3, and CH313COONa as an internal standard. The method was first applied to soluble inorganic carbonates and bicarbonates and then extended to insoluble carbonates by converting them to Na2CO3, following a simple procedure and without observing isotopic fractionation. Here, we demonstrate that 13C NMR spectroscopy can also be successfully adopted to characterize the 13C/12C isotope ratio in inorganic carbonates and bicarbonates with applications in different fields, such as cultural heritage and geological studies.

5.
Curr Microbiol ; 73(2): 287-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27086304

RESUMO

Sodium dichloroisocyanurate (NaDCC) is usually employed as a disinfectant for the treatment of water, environmental surfaces and medical equipment principally for its effectiveness as a microbicide agent. In this study, we explore the possibility of a new use for NaDCC by investigating the microbicidal activity of chlorine, which derives from the hydrolysis of NaDCC mediated by air humidity, and by testing its effect on the neutralization of microbes present in domestic waste. NaDCC was inserted in a plastic garbage can where LB agar plates, with different dilutions of a known title of four different microorganisms (Escherichia coli, Staphylococcus aureus, Debaryomyces hansenii and Aspergillus brasiliensis), were weakly inserted. The molecular chlorine (Cl2) levels present in the garbage can were quantified using an iodometric titration. The gas emitted in the garbage can presented a strong microbicide effect, inhibiting the proliferation of all four microorganisms and for four consecutive weeks, thus showing that NaDCC hydrolysis, mediated by air humidity, is able to ensure the decontamination of restricted environments, avoiding the proliferation of both Gram-positive and Gram-negative bacteria as well as fungi.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Triazinas/farmacologia , Desinfetantes/química , Desinfetantes/farmacologia , Escherichia coli/efeitos dos fármacos , Fungos/efeitos dos fármacos , Gases/química , Gases/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Triazinas/química
6.
J Environ Manage ; 132: 9-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24252633

RESUMO

Phytoremediation is a cost-effective and environment friendly in situ technique for the reclamation of heavy metal-polluted soils. The efficacy of this technique, which relies on tolerant plant species, can be improved by the use of chelating agents. A pot experiment was carried out to evaluate the phytoextraction and phytostabilisation capacities of a white poplar (Populus alba L.) clone named AL35 previously selected for its marked tolerance to copper (Cu) and zinc (Zn). Cuttings were grown on agricultural soil highly contaminated with Cu and Zn, in the presence or not (controls) of a chelant mixture (EDTA/EDDS) known to enhance metal bioavailability and, hence, uptake by plant roots, or the not yet investigated synthetic, highly biodegradable polyaspartic acid (PASP). Both chelant treatments improved the phytostabilisation of Cu and Zn in AL35 plants, whilst the phytoextraction capacity was enhanced only in the case of Cu. Considering that the effectiveness of PASP as phytostabilizer was comparable or better than that of EDTA/EDDS, the low cost of its large-scale chemical synthesis and its biodegradability makes it a good candidate for chelant-enhanced metal phytoextraction from soil while avoiding the toxic side-effects previously described for both EDTA and EDDS.


Assuntos
Quelantes/metabolismo , Ácido Edético/metabolismo , Recuperação e Remediação Ambiental/métodos , Etilenodiaminas/metabolismo , Peptídeos/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Succinatos/metabolismo , Biodegradação Ambiental , Cobre/metabolismo , Populus/genética , Zinco/metabolismo
7.
Nanotechnology ; 24(7): 075704, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23358596

RESUMO

Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Radiometria/instrumentação , Cobre/química , Relação Dose-Resposta à Radiação , Eletricidade , Eletrodos , Nanotubos de Carbono/ultraestrutura , Silício/química
8.
Environ Sci Pollut Res Int ; 30(2): 3112-3120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35945319

RESUMO

Thermo-mineral springs are widely spread over the volcanic areas of Salerno, a city in southern Italy. Although the water of thermal structures provides beneficial effects on human health, the air is characterized by the presence of potentially toxic compounds, such as hydrogen sulphide (H2S) and sulphur dioxide (SO2). Exposure to sulphurous compounds may have detrimental effects on human health, with asthma being the most common. In this study, air concentrations of H2S and SO2 in the thermal springs of Contursi Terme (Salerno, Italy) were monitored for 4 months (using both active and passive sampling), along with the chemical and microclimatic characterization of thermal water, to assess workers' exposure to these pollutants. An in-depth characterization of indoor air at the springs is paramount to establish emission control limits for occupational exposure and to take protective measures. The air concentration of SO2 varied from 0.11 ± 0.02 to 0.91 ± 0.02 mg/m3, following a seasonal pattern (higher values in winter and lower in spring). Conversely, indoor H2S concentrations did not vary significantly with time, but outdoor levels (from 0.40 ± 0.03 to 1.90 ± 0.03 mg/m3) were always higher than indoor ones (from 0.11 ± 0.03 to 0.56 ± 0.03 mg/m3). Not negligible air concentrations of these pollutants were detected in this thermal spring workplace, so further investigations are needed to ensure workers' safety.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Exposição Ocupacional , Humanos , Poluentes Atmosféricos/análise , Exposição Ocupacional/análise , Dióxido de Enxofre , Minerais , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental
9.
Environ Sci Pollut Res Int ; 30(47): 104633-104639, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707725

RESUMO

The identification of the degradation products in objects of cultural significance, including musical instruments (e.g., a piano), is a key issue for the preservation and valorisation processes of cultural heritage. The aim of this study is to characterize the degradation products of lead weights from an important Steinway & sons piano using a multi-analytical approach that includes ionic chromatography (IC), X-ray diffraction (XRD) and Fourier transform-infrared (FTIR) spectroscopy analyses. These techniques allowed us to identify hydrocerussite as the main degradation product on the superficial layer of lead weights, followed by lead acetate and formate. Moreover, accelerated corrosion experiments in closed environments were performed under acetic and formic acid atmospheres to evaluate the development of lead acetate and formate over time. Exposure of lead weights to formic and acetic acid vapours leads to the prevalent formation of basic lead formate, which promotes the formation of hydrocerussite. These results can help to limit the degradation of these piano components and consequently preserve the sound of the piano itself.


Assuntos
Chumbo , Núcleo Familiar , Ácido Acético , Formiatos
10.
J Hazard Mater ; 452: 131235, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948125

RESUMO

In this work, Fe3+-iminodisuccinic acid (Fe:IDS) based solar photo Fenton (SPF), an Italian patented method, was investigated in quaternary treatment of real urban wastewater and compared to Fe3+-ethylenediamine-N,N'-disuccinic acid (Fe:EDDS) for the first time. Three pharmaceuticals (PCs) (sulfamethoxazole, carbamazepine and trimethoprim) and four pathogens (Escherichia coli, somatic and F-plus coliphages, Clostridium perfringens, consistently with the new EU regulation for wastewater reuse (2020/741)), were chosen as target pollutants. SPF with Fe:EDDS was more effective in PCs removal (80%, 10 kJ L-1) than the SPF with Fe:IDS (58%), possibly due to the higher capability of generating hydroxyl radicals. On the contrary, Fe:IDS was more effective (4.3 log inactivation for E. coli) than Fe:EDDS (1.9 log) in pathogens inactivation, possibly due to a lower iron precipitation and turbidity which finally promoted an improved intracellular photo-Fenton mechanism. Fe:L based SPF was subsequently coupled to sunlight/H2O2. Interestingly, while its combination with Fe:EDDS based SPF slightly increased disinfectant efficacy (2.3 vs 1.9 log inactivation for E. coli), the combination with Fe:IDS decreased inactivation efficiency (3.4 vs 4.3 log reduction). In conclusion, due to the good compromise between PCs removal and disinfection efficiency, Fe:IDS SPF alone is an attractive option for quaternary treatment for urban wastewater reuse.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Luz Solar , Peróxido de Hidrogênio , Escherichia coli , Quelantes , Preparações Farmacêuticas , Oxirredução , Poluentes Químicos da Água/análise
11.
Anal Biochem ; 421(1): 92-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22067981

RESUMO

Human bones, recovered from excavations, are an important biological archive of information. In particular, the analysis of the collagen fraction is useful for paleodietary reconstruction, via light stable isotopes, and for (14)C dating. Generally, collagen extraction procedures do not prevent loss of integrity of proteins. As a consequence, information about the state-of-remains preservation is unavailable. Here we describe a "soft" nondestructive CH(3)COOH-based method to recover collagen from archaeological bones, and also to obtain material for successive isotopic analyses. Our isotopic measurements on the extracts indicate that the CH(3)COOH-based method of extraction may be routinely employed in the context of paleodiet studies. In addition, we propose that biochemical characterization by denaturant electrophoresis and Western blot on CH(3)COOH extracts may be used as a bone collagen quality indicator.


Assuntos
Osso e Ossos/química , Colágeno/isolamento & purificação , Fósseis , Ácido Acético , Arqueologia/métodos , Western Blotting , Isótopos de Carbono/análise , Colágeno/química , Colágeno/normas , Eletroforese em Gel de Poliacrilamida , Humanos
12.
Toxics ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736889

RESUMO

Although being banned or restricted in many countries since the early 1990s, large quantities of asbestos are still used or present in building materials all over the world and its removal or handling requires specific systems that limit exposure to airborne fibers The exposure to asbestos causes chronic diseases such as asbestosis and lung cancer with an incubation period of 20 to 50 years. Among the operators most exposed to contamination are those who handle and analyze the materials in laboratories. For this reason, our work focused on an innovative method for removing a filter unit from a laboratory extraction hood, in order to improve the safety conditions for the operators and the surrounding environment. The hood has a particular construction technology with a mechanism that allows the spraying of a special encapsulating liquid on the ULPA filters below the work-bench, which is capable of forming a film and blocking the fibers on the surface of the same filter. The fibers are irreversibly bounded and can no longer be released into the surrounding environment. The monitoring of activity highlighted the absence of asbestos fibers in the air after installation of the filter and workers feel safer performing their activities. The introduction of an innovative filtering system enhanced the safety of work activities involving asbestos exposure, moreover, the time spent on the hood's maintenance and the risk perception of workers were improved.

13.
Environ Sci Pollut Res Int ; 29(20): 29385-29390, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389576

RESUMO

In this study, we evaluated indoor air quality to highlight the effects of environmental pollution in the field of cultural heritage. In particular, two important archeological places in the old part of the city of Salerno, Italy, were analyzed: Fruscione Palace and S. Pietro a Corte. The work focused on the influence of tourists on environmental pollution correlated to indoor air quality during some social and cultural events. Moreover, we focused on the possible use of the carbon isotopic composition of CO2 as a tool for environmental studies in the field of cultural heritage. The results showed a good relationship between the isotopic composition of CO2 and the variation of pollutants concentration in the air, demonstrating that it is a valid tool and non-invasive marker to monitor environmental pollution of museums and cultural heritage sites.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono , Monitoramento Ambiental/métodos
14.
Environ Sci Pollut Res Int ; 29(20): 29391-29398, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33813696

RESUMO

The most important parameter to obtain an appropriate preservation condition of museum environments concerns the indoor air quality. The exposure of artwork and materials to gaseous and particulate pollutants introduced by visitors and either indoor or outdoor sources contributes to their decay. In this work, we evaluated the possible monitoring of the visitors' influence using the stable carbon isotopic ratio of CO2 and the concentration of NH3 as a real-time tool. The study was done in the Refectory of Santa Maria delle Grazie (Milan, Italy) which houses one of the most important paintings of Leonardo da Vinci, the Last Supper, and had more than 400,000 visitors in 2019. The results confirmed a good correlation between the presence of tourists inside the museum and the variation of δ13C value during the visits and the closure of the museum. The variation of indoor atmospheric δ13C was influenced by the presence of visitors in the Refectory and delineates the way done from the entrance to the exit. In the same way, the concentration of NH3 was influenced by the presence of visitors and confirmed the role of this one on preservation methodology for indoor air quality in the museum. This new methodology can be used as a supplemental and non-invasive tool to help in calibrating microclimatic conditions through the ventilation rate and air filtration systems in the museum and to manage the number of visitors per turn.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Pinturas , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Itália , Microclima , Museus
15.
Environ Sci Pollut Res Int ; 29(20): 29409-29418, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34189694

RESUMO

In this paper, we analysed the efflorescences present in the frescos of a monumental complex named S. Pietro a Corte situated in the historic centre of Salerno (Campania, Italy). The groundwater of the historic centre is fed by two important streams (the Rafastia and the Fusandola) that can be the sources of water penetration. The aims of this work are to (i) identify the stream that reaches the ancient frigidarium of S. Pietro a Corte and (ii) characterize the efflorescences on damaged frescos in terms of chemical nature and sources. In order to accomplish the first aim, the water of the Rafastia river (7 samples) and the water of the Fusandola river (7 samples) were analysed and compared with the water of a well of the Church (7 samples). The ionic chromatography measurements on the water samples allowed us to identify the Rafastia as the river that feeds the ancient frigidarium of S. Pietro a Corte. To investigate the nature and the origin of the efflorescences (our second aim), anionic chromatography analyses, X-ray diffraction measurements, and the isotopic determination of nitrogen were performed on the efflorescences (9 samples) and the salts recovered from the well (6 samples). Results of these analyses show that efflorescences are mainly made of potassium nitrate with a δ15N value of + 9.3 ± 0.2‰. Consequently, a plausible explanation for their formation could be the permeation of sewage water on the walls of the monumental complex.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios/química , Água/análise , Poluentes Químicos da Água/análise
16.
Toxics ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548601

RESUMO

BACKGROUND: The disinfection process represents an important activity closely linked to the removal of micro-organisms in common processing systems. Traditional disinfectants are often not sufficient to avoid the spread of food pathogens; therefore, innovative strategies for decontamination are crucial to countering microbial transmission. This study aims to assess the antimicrobial efficiency of tetrapotassium iminodisuccinic acid salt (IDSK) against the most common pathogens present on surfaces, especially in food-borne environments. METHODS: IDSK was synthesized from maleic anhydride and characterized through nuclear magnetic resonance (NMR) spectroscopy (both 1H-NMR and 13C-NMR), thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy. The antibacterial activity was performed via the broth microdilution method and time-killing assays against Escherichia coli, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis and Pseudomonas aeruginosa (IDSK concentration range: 0.5-0.002 M). The biofilm biomass eradicating activity was assessed via a crystal violet (CV) assay. RESULTS: The minimum inhibitory concentration (MIC) of IDSK was 0.25 M for all tested strains, exerting bacteriostatic action. IDSK also reduced biofilm biomass in a dose-dependent manner, reaching rates of about 50% eradication at a dose of 0.25 M. The advantages of using this innovative compound are not limited to disinfecting efficiency but also include its high biodegradability and its sustainable synthesis. CONCLUSIONS: IDSK could represent an innovative and advantageous disinfectant for food processing and workers' activities, leading to a better quality of food and safer working conditions for the operators.

17.
Toxics ; 9(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34564375

RESUMO

Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment to humans mainly through inhalation, secondly from ingestion, and, to a lesser extent, through dermal contact. As regards food web contamination, we discuss the microplastic presence not only in the most investigated sources, such as seafood, drinking water, and salts, but also in other foods such as honey, sugar, milk, fruit, and meat (chickens, cows, and pigs). All literature data suggest not-negligible human exposure to MPs through the above-mentioned routes. Consequently, several research efforts have been devoted to assessing potential human health risks. Initially, toxicological studies were conducted with aquatic organisms and then with experimental mammal animal models and human cell cultures. In the latter case, toxicological effects were observed at high concentrations of MPs (polystyrene is the most common MP benchmark) for a short time. Further studies must be performed to assess the real consequences of MP contamination at low concentrations and prolonged exposure.

18.
Foods ; 10(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828916

RESUMO

The carbon stable isotope ratio (δ13C) is a valuable chemical parameter in the investigation of the geographic origin, quality, and authenticity of foods. The aim of this study is the evaluation of the feasibility of 13C-NMR (Nuclear Magnetic Resonance) spectroscopy to determine the carbon stable isotope ratio, at natural abundance, of small organic molecules, such as vanillin, without the use of IRMS (Isotope Ratio Mass Spectrometry). The determination of vanillin origin is an active task of research, and differentiating between its natural and artificial forms is important to guarantee the quality of food products. To reach our goal, nine vanillin samples were analyzed using both 13C quantitative NMR spectroscopy (under optimized experimental conditions) and IRMS, and the obtained δ13C values were compared using statistical analysis (linear regression, Bland-Altman plot, and ANOVA (analysis of variance)). The results of our study show that 13C-NMR spectroscopy can be used as a valuable alternative methodology to determine the bulk carbon isotope ratio and to identify the origin of vanillin. This makes it attractive for the analysis in the same experiment of site-specific and total isotope effects for testing authenticity, quality, and typicality of food samples. Moreover, the improvement of NMR spectroscopy makes it possible to avoid the influence of additives on carbon stable isotope ratio analysis and to clearly identify fraud and falsification in commercial samples.

19.
Sci Total Environ ; 767: 144395, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434835

RESUMO

In this work permaleic acid (PMA) was investigated as possible disinfecting agent and compared to peracetic acid (PAA) in real tap water and wastewater. Preliminary tests in lysogeny broth (LB) were also performed. PMA was synthesized from maleic anhydride and hydrogen peroxide and, for the first time, its antimicrobial activity was evaluated with respect to the growth inhibition of E. coli. The effect of the pH and bivalent ions, typically occurring in real water matrices (namely, Mg2+ and Ca2+), was also investigated. pKa values for PMA were calculated for the first time by DFT calculations. The concentration of bivalent ions strongly affected disinfection efficiency with PMA (Ca2+=0.33 mgL-1 and Mg2+=0.35 mgL-1: 100% E. coli reduction > log 5; Ca2+=13.3 mg L-1 and Mg2+=25.6 mg L-1: E. coli reduction < log 1, after 60 min), and such results were supported by DFT modelling outcomes (pKa2 of PMA 7.3) and disinfection tests in presence of EDTA chelating agent. More alkaline pH conditions drastically decreased PMA disinfection (pH = 5: > log 5 E.coli reduction; pH = 9: < log 1 E.coli reduction, after 60 min). PMA disinfection efficiency is strongly affected by the target water quality, the concentration of metal bivalent ions and the initial pH.


Assuntos
Desinfetantes , Purificação da Água , Desinfecção , Escherichia coli , Ácido Peracético , Águas Residuárias
20.
Sci Total Environ ; 797: 149206, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311370

RESUMO

The growing demand to reduce chlorine usage and control disinfection byproducts increased the development of new strategies in wastewater treatments. Organic peracids are increasingly attracting interest in disinfection activities as a promising alternative to chlorine and chlorine-based agents. In this study, we assessed the antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of a new organic peracid, permaleic acid (PMA) compared with the reference peracetic acid (PAA). Disinfectant properties were evaluated by i) disk diffusion agar, ii) broth microdilution, iii) antibiofilm properties. PMA demonstrated a 10- and 5-fold decrease in the microbial inhibitory concentration (MIC) value against E. coli and S. aureus respectively, compared to PAA. Results showed greater efficacy of PMA regarding wastewater (WW) and treated wastewater (TWW) disinfection at low concentrations. Furthermore, the biofilm degradation ability was only observed following PMA treatment, for both strains. Bacterial regrowth from biofilm matrix after PAA and PMA disinfection, in the absence and presence of organic matter, was evaluated. PMA was more efficient than PAA to prevent the regrowth of planktonic cells of S. aureus and E. coli. After PAA and PMA treatment, in the presence of organic matter, the bacterial regrowth inhibition was maintained up to 10 and 5 g/L, respectively. Based on these results, PMA could be used as a valid alternative to the currently used disinfection methods.


Assuntos
Desinfetantes , Ácido Peracético , Desinfetantes/farmacologia , Desinfecção , Escherichia coli , Ácido Peracético/farmacologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA