Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572896

RESUMO

The search for novel anti-cancer compounds which can circumvent chemotherapeutic drug resistance and limit systemic toxicity remains a priority. 2-Ethyl-3-O-sulphamoyl-estra-1,3,5(10)15-tetraene-3-ol-17one (ESE-15-one) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) are sulphamoylated 2-methoxyestradiol (2-ME) analogues designed by our research team. Although their cytotoxicity has been demonstrated in vitro, the temporal and mechanistic responses of the initiated intracellular events are yet to be determined. In order to do so, assays investigating the compounds' effects on microtubules, cell cycle progression, signalling cascades, autophagy and apoptosis were conducted using HeLa cervical- and MDA-MB-231 metastatic breast cancer cells. Both compounds reversibly disrupted microtubule dynamics as an early event by binding to the microtubule colchicine site, which blocked progression through the cell cycle at the G1/S- and G2/M transitions. This was supported by increased pRB and p27Kip1 phosphorylation. Induction of apoptosis with time-dependent signalling involving the p-JNK, Erk1/2 and Akt/mTOR pathways and loss of mitochondrial membrane potential was demonstrated. Inhibition of autophagy attenuated the apoptotic response. In conclusion, the 2-ME analogues induced a time-dependent cross-talk between cell cycle checkpoints, apoptotic signalling and autophagic processes, with an increased reactive oxygen species formation and perturbated microtubule functioning appearing to connect the processes. Subtle differences in the responses were observed between the two compounds and the different cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estrona/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/genética , Autofagia/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Estrenos/farmacologia , Estrona/análogos & derivados , Estrona/química , Feminino , Células HeLa , Humanos , Microtúbulos/química , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias do Colo do Útero/patologia
2.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304836

RESUMO

Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.


Assuntos
Apicomplexa/fisiologia , Plantas/metabolismo , Plantas/parasitologia , Tubulina (Proteína)/metabolismo , Animais , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Fotossíntese , Células Vegetais/metabolismo , Plasmodium falciparum , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
3.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697987

RESUMO

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Assuntos
Antineoplásicos , Proliferação de Células , Complexo I de Transporte de Elétrons , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Antineoplásicos/farmacologia , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desacopladores/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ratos , NADH Desidrogenase/metabolismo , NADH Desidrogenase/antagonistas & inibidores
4.
Med Sci (Paris) ; 29(10): 897-905, 2013 Oct.
Artigo em Francês | MEDLINE | ID: mdl-24148129

RESUMO

Phenotypic screens, in which chemical libraries are assayed on cells with the aim to isolate compounds that interfere with a given cell function, are a risky but powerful strategy to discover, in the same approach, new therapeutic targets and the compounds able to regulate them. With a strong experience of nearly 10 years in the field, we present the advantages of such an approach, the possible troubles and technical solutions. We also present in this paper a french network which has been recently built and that gather all the competencies needed for screening approaches.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Terapia de Alvo Molecular/métodos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Avaliação Pré-Clínica de Medicamentos/instrumentação , França , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fenótipo , Bibliotecas de Moléculas Pequenas/provisão & distribuição
5.
Drug Discov Today ; 28(11): 103760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660985

RESUMO

Affinity selection mass spectrometry (AS-MS) has gained momentum in drug discovery. This review summarizes how this technology has slowly risen as a new paradigm in hit identification and its potential synergy with DNA encoded library technology. It presents an overview of the recent results on challenging targets and perspectives on new areas of research, such as RNA targeting with small molecules. The versatility of the approach is illustrated and strategic drivers discussed in terms of the experience of a small-medium CRO and a big pharma organization.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas/métodos , DNA , Tecnologia
6.
Blood ; 116(9): 1604-12, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20501893

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetically inheritable vascular dysplasia caused by mutations in genes encoding receptors of the transforming growth factor-beta (TGF-beta) family: ENG, encoding endoglin (HHT1), and ACVRL1, encoding activin receptor-like kinase-1 (ALK1; HHT2). Our recent discovery of bone morphogenetic protein 9 (BMP9) as the specific ligand for ALK1 allowed us to reevaluate the functional significance of ACVRL1 mutations. We generated 19 ALK1 mutants reproducing HHT2 mutations (4 were novel mutations) found throughout the protein. We show that all ALK1 mutant proteins were expressed by transfected cells; most of them were present at the cell surface and retained their ability to bind BMP9 (except for the extracellular mutants). However, most were defective in BMP9 signaling. None of the ALK1 mutants had a dominant negative effect on wild-type ALK1 activity. These data demonstrate that mutations of ACVRL1 fit with a functional haploinsufficiency model affecting BMP9 signaling. Our study also identified 4 ACVRL1 mutations (D179A, R386C, R454W, and A482V) that did not alter the BMP9 responses that are polymorphisms and 2 novel mutations that are pathogenic (L381P and I485F). This demonstrates that the analysis of BMP9 responses can be used as a diagnostic tool by geneticists confronted with novel or conflicting ACVRL1 mutations.


Assuntos
Receptores de Activinas Tipo II/genética , Fatores de Diferenciação de Crescimento/metabolismo , Mutação/genética , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Animais , Western Blotting , Citometria de Fluxo , Fator 2 de Diferenciação de Crescimento , Humanos , Imunoprecipitação , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Prognóstico
7.
J Med Chem ; 65(22): 15300-15311, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378254

RESUMO

The PRMT5-MEP50 methyltransferase is a major target for anticancer drug discovery, and modulators of its interactions with different regulatory proteins are in high demand because they modulate PRMT5 substrate selectivity. We describe a strategy for the development of a PRMT5/adaptor protein PPI inhibitor, which includes the design and synthesis of macrocyclic peptides based on the motif for the interaction of PRMT5 with its adaptor protein RioK1. After the initial exploration of different macrocycle sizes and cyclization linkages, analysis of a peptide library identified hot spots for the variation of the amino acid structure. The incorporation of nonproteinogenic amino acids into the macrocyclic peptide led to a potent cyclic PRMT5 binding peptide (Ki = 66 nM), which selectively inhibits the interaction of PRMT5 with the adaptor proteins RioK1 and pICln (IC50 = 654 nM) but not with the alternative adaptor protein MEP50. The inhibitor is a promising tool for further biological investigation of this intriguing protein interface.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores Enzimáticos/farmacologia , Descoberta de Drogas
8.
J Clin Med ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431240

RESUMO

Ph+ (BCR::ABL+) B-ALL was considered to be high risk, but recent advances in BCR::ABL-targeting TKIs has shown improved outcomes in combination with backbone chemotherapy. Nevertheless, new treatment strategies are needed, including approaches without chemotherapy for elderly patients. LIMK1/2 acts downstream from various signaling pathways, which modifies cytoskeleton dynamics via phosphorylation of cofilin. Upstream of LIMK1/2, ROCK is constitutively activated by BCR::ABL, and upon activation, ROCK leads to the phosphorylation of LIMK1/2, resulting in the inactivation of cofilin by its phosphorylation and subsequently abrogating its apoptosis-promoting activity. Here, we demonstrate the anti-leukemic effects of a novel LIMK1/2 inhibitor (LIMKi) CEL_Amide in vitro and in vivo for BCR::ABL-driven B-ALL. The IC50 value of CEL_Amide was ≤1000 nM in BCR::ABL+ TOM-1 and BV-173 cells and induced dose-dependent apoptosis and cell cycle arrest in these cell lines. LIMK1/2 were expressed in BCR::ABL+ cell lines and patient cells and LIMKi treatment decreased LIMK1 protein expression, whereas LIMK2 expression was unaffected. As expected, CEL_Amide exposure caused specific activating downstream dephosphorylation of cofilin in cell lines and primary cells. Combination experiments with CEL_Amide and BCR::ABL TKIs imatinib, dasatinib, nilotinib, and ponatinib were synergistic for the treatment of both TOM-1 and BV-173 cells. CDKN2Ako/BCR::ABL1+ B-ALL cells were transplanted in mice, which were treated with combinations of CEL_Amide and nilotinib or ponatinib, which significantly prolonged their survival. Altogether, the LIMKi CEL_Amide yields activity in Ph+ ALL models when combined with BCR::ABL-targeting TKIs, showing promising synergy that warrants further investigation.

9.
Biochim Biophys Acta ; 1804(3): 493-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19766740

RESUMO

Protein kinase CK2 is an unfavorable pronostic marker in several cancers and has consequently emerged as a relevant therapeutic target. Several classes of ATP-competitive inhibitors have been identified, showing variable effectiveness. The molecular architecture of this multisubunit enzyme could offer alternative strategies to develop small molecule inhibitors targeting different surfaces of the kinase. Polyoxometalates were identified as original CK2 inhibitors targeting key structural elements located outside the active site. In addition, the CK2 subunit interface represents an exosite distinct from the catalytic cavity that can be targeted by peptides or small molecules to achieve functional effects.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Caseína Quinase II/antagonistas & inibidores , Neoplasias/enzimologia , Inibidores da Síntese de Proteínas/química , Compostos de Tungstênio/química , Animais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Humanos , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Proteínas/uso terapêutico , Compostos de Tungstênio/uso terapêutico
10.
FASEB J ; 24(9): 3171-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20400536

RESUMO

Protein kinase casein kinase 2 (CK2) is a serine/threonine kinase with evidence of implication in growth dysregulation and apoptosis resistance, making it a relevant target for cancer therapy. Several CK2 inhibitors have been developed showing variable efficiency, emphasizing the need to expand the chemical diversity of those inhibitors. We report the identification and characterization of 2,8-difurandicarboxylic acid derivatives as a new class of nanomolar ATP-competitive inhibitors. Selectivity profiling pointed out proviral insertion Moloney virus kinases (Pim kinases) as the only other kinases that are significantly inhibited. By combining structure-activity relationship analysis with structural determination, we were able to determine the binding mode of these inhibitors for both kinases and to explain their strong inhibitory potency. Essential chemical features necessary for activity on both kinases were then identified. The described compounds are not cell permeable: however, they could provide a lead for developing novel inhibitors usable also in vivo. Given the similar but not redundant pathophysiological functions of CK2 and Pim family members, such inhibitors would provide new attractive leads for targeted cancer therapy. This work highlights that 2 functionally related kinases from different kinome branches display exquisite sensitivity to a common inhibitor.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Sítios de Ligação , Caseína Quinase II/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Estabilidade Enzimática , Humanos , Proteínas Proto-Oncogênicas c-pim-1/química
11.
Mol Cell Biochem ; 356(1-2): 75-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21861102

RESUMO

Programs that govern stem cell maintenance and pluripotency are dependent on extracellular factors and of intrinsic cell modulators. Embryonic stem (ES) cells with a specific depletion of the gene encoding the regulatory subunit of protein kinase CK2 (CK2ß) revealed a viability defect. However, analysis of CK2ß functions along the neural lineage established CK2ß as a positive regulator for neural stem/progenitor cell (NSC) proliferation and multipotency. By using an in vitro genetic conditional approach, we demonstrate in this work that specific domains of CK2ß involved in the regulatory function towards CK2 catalytic subunits are crucial structural determinants for ES cell homeostasis.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Células-Tronco Embrionárias/enzimologia , Animais , Domínio Catalítico , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Células-Tronco Embrionárias/citologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Relação Estrutura-Atividade , Teratoma/patologia
12.
Nat Rev Chem ; 5(1): 62-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37118102

RESUMO

Affinity selection-mass spectrometry (AS-MS) is a high-throughput screening (HTS) technique for drug discovery that enables rapid screening of large collections of compounds to identify ligands for a specific biomolecular target. AS-MS is a binding assay that is insensitive to the functional effects a ligand might have, which is important because it lets us identify novel ligands irrespective of their binding site. This approach is gaining popularity, notably due to its role in the emergence of useful agents for targeted protein degradation. This Perspective highlights the use of AS-MS techniques to explore broad chemical space and identify small-molecule ligands for biological targets that have proven challenging to address with other screening paradigms. We present chemical structures of reported AS-MS hits to illustrate the potential of this screening approach to deliver high-quality hits for further optimization. AS-MS has, thus, evolved from being an infrequent alternative to traditional HTS or DNA-encoded library strategies to now firmly establishing itself as a HTS approach for drug discovery.

13.
Leuk Res ; 100: 106490, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373830

RESUMO

Patients with FLT3-ITD mutated (FLT3-ITD+) Acute Myeloid Leukemia (AML), have frequently relapsed or refractory disease and FLT3-ITD+ inhibitors have limited efficacy. Rho kinases (ROCK) are constitutively activated by FLT3-ITD+ in AML via PI3 kinase and Rho GTPase. Upon activation by ROCK, LIM kinases (LIMK) inactivate cofilin by phosphorylation which affects cytoskeleton dynamics, cell growth and apoptosis. LIMK inhibition leads to cofilin activation via dephosphorylation and activated cofilin localizes to mitochondria inducing apoptosis. Thus, we investigated the therapeutic potential of the LIMK1/2 inhibitor CEL_Amide (LIMKi) in FLT3-ITD+ AML. Expression of LIMK1/2 in FLT3-ITD+ cell lines MOLM-13 and MV-4-11 cells could be detected by RT-qPCR and at the protein level. IC50 after LIMKi monotherapy was 440 nM in MOLM-13 cells and 420 nM in MV4-11 cells. Treatment with LIMKi decreased LIMK1 protein levels and repression of inactivating phosphorylation of cofilin in FLT3-ITD+ cells. Combination experiments with LIMKi and FLT3 inhibitors including midostaurin, crenolanib and gilteritinib were synergistic for treatment of MOLM-13 cells while combinations with quizartinib were additive. Combinations of LIMKi and the hypomethylating agent azacitidine or the ROCK inhibitor fasudil were additive. In NOD-SCID mice engrafted with MOLM13-LUC cells, the FLT3 inhibitor midostaurin and LIMKi delayed MOLM13-LUC engraftment as detected by in vivo bioluminescence imaging and the LIMKi and midostaurin combination prolonged significantly survival of leukemic mice. LIMK1/2 inhibition by the small molecule CEL_Amide seems to have promising activity in combination with FLT3 inhibitors in vitro as well as in vivo and may constitute a novel treatment strategy for FLT3-ITD+ AML.


Assuntos
Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Quinases Lim/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Amidas/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
14.
Eukaryot Cell ; 8(3): 388-97, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114502

RESUMO

Protein kinase CK2 (casein kinase 2) is a eukaryotic serine/threonine protein kinase with multiple substrates and roles in diverse cellular processes, including differentiation, proliferation, and translation. The mammalian holoenzyme consists of two catalytic alpha or alpha' subunits and two regulatory beta subunits. We report the identification and characterization of a Plasmodium falciparum CK2alpha orthologue, PfCK2alpha, and two PfCK2beta orthologues, PfCK2beta1 and PfCK2beta2. Recombinant PfCK2alpha possesses protein kinase activity, exhibits similar substrate and cosubstrate preferences to those of CK2alpha subunits from other organisms, and interacts with both of the PfCK2beta subunits in vitro. Gene disruption experiments show that the presence of PfCK2alpha is crucial to asexual blood stage parasites and thereby validate the enzyme as a possible drug target. PfCK2alpha is amenable to inhibitor screening, and we report differential susceptibility between the human and P. falciparum CK2alpha enzymes to a small molecule inhibitor. Taken together, our data identify PfCK2alpha as a potential target for antimalarial chemotherapeutic intervention.


Assuntos
Caseína Quinase II/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Caseína Quinase II/química , Caseína Quinase II/genética , Humanos , Cinética , Dados de Sequência Molecular , Plasmodium falciparum/química , Plasmodium falciparum/genética , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781579

RESUMO

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for pharmaceutics which could potentiate its therapeutic effect. We screened a chemical library and selected Carba1, a carbazole, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. Catastrophe induction by Carba1 promotes paclitaxel binding to microtubule ends, providing a mechanistic explanation of the observed synergy. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel binding to dynamic microtubules can be transposed to in vivo mouse cancer treatments, paving the way for new therapeutic strategies combining low doses of microtubule targeting agents with opposite mechanisms of action.

16.
Biochim Biophys Acta ; 1780(12): 1412-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18674590

RESUMO

Protein kinase CK2 is a Ser/Thr kinase, with a constitutive activity, that is considered as a promising target for cancer therapy. The currently available CK2 inhibitors lack the potency and the pharmacological properties necessary to be suitable and successful in clinical settings. We report the development of new potent CK2 inhibitors from salicylaldehyde derivatives identified by automated screening of a proprietary small-molecule library. Docking simulations and analysis of the structure-activity relationship for the hits allowed to determine their binding modes on CK2, and to carry out the optimization of their structures. This strategy led to the discovery of potent CK2 inhibitors with novel structures, one of which was able to inhibit CK2 activity in living cells and promote tumor cell death. The essential features required for potent CK2 inhibitory activity of this class of compounds are discussed.


Assuntos
Aldeídos/química , Antineoplásicos/química , Caseína Quinase II/antagonistas & inibidores , Aldeídos/farmacologia , Antineoplásicos/farmacologia , Caseína Quinase II/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
17.
Chem Biol ; 15(7): 683-92, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18635005

RESUMO

Protein kinase CK2 is a multifunctional kinase of medical importance that is dysregulated in many cancers. In this study, polyoxometalates were identified as original CK2 inhibitors. [P2Mo18O62](6-) has the most potent activity. It inhibits the kinase in the nanomolar range by targeting key structural elements located outside the ATP- and peptide substrate-binding sites. Several polyoxometalate derivatives exhibit strong inhibitory efficiency, with IC50 values < or = 10 nM. Furthermore, these inorganic compounds show a striking specificity for CK2 when tested in a panel of 29 kinases. Therefore, polyoxometalates are effective CK2 inhibitors in terms of both efficiency and selectivity and represent nonclassical kinase inhibitors that interact with CK2 in a unique way. This binding mode may provide an exploitable mechanism for developing potent drugs with desirable properties, such as enhanced selectivity relative to ATP-mimetic inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Compostos de Tungstênio/farmacologia , Trifosfato de Adenosina/química , Sítios de Ligação , Química Farmacêutica/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Conformação Molecular , Estrutura Molecular , Peptídeos/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Compostos de Tungstênio/química
18.
Sci Rep ; 9(1): 15893, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685885

RESUMO

CK2 is a constitutively active protein kinase overexpressed in numerous malignancies. Interaction between CK2α and CK2ß subunits is essential for substrate selectivity. The CK2α/CK2ß interface has been previously targeted by peptides to achieve functional effects; however, no small molecules modulators were identified due to pocket flexibility and open shape. Here we generated numerous plausible conformations of the interface using the fumigation modeling protocol, and virtually screened a compound library to discover compound 1 that suppressed CK2α/CK2ß interaction in vitro and inhibited CK2 in a substrate-selective manner. Orthogonal SPR, crystallography, and NMR experiments demonstrated that 4 and 6, improved analogs of 1, bind to CK2α as predicted. Both inhibitors alter CK2 activity in cells through inhibition of CK2 holoenzyme formation. Treatment with 6 suppressed MDA-MB231 triple negative breast cancer cell growth and induced apoptosis. Altogether, our findings exemplify an innovative computational-experimental approach and identify novel non-peptidic inhibitors of CK2 subunit interface disclosing substrate-selective functional effects.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Holoenzimas/metabolismo , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Caseína Quinase II/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Holoenzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
19.
Biochem Biophys Res Commun ; 367(2): 264-70, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18157942

RESUMO

Of the four subunits constituting DNA polymerase delta, subunit C or p66 has been shown to mainly mediate polymerase interaction with PCNA, an auxiliary factor that greatly enhances DNA polymerase delta processivity on primed DNA templates. Here, we provide evidence that a highly conserved region located between amino acids 384 and 399 in the C-terminus of p66 is phosphorylated, most probably by Protein kinase CK2, and that another region, most probably located within the PCNA interacting domain in its extreme C-terminus, regulates its interaction with PCNA. Phosphorylation of p66 is associated with its co-localization with large subunit of DNA polymerase delta, p125, and PCNA, to the insoluble chromatin fraction at the beginning of S-phase. Taken together, the results provide evidence that concurrent phosphorylation events in p66 may positively and negatively regulate its activity and interactions with other components of the replisome during the cell cycle.


Assuntos
DNA Polimerase III/química , DNA Polimerase III/metabolismo , DNA/química , DNA/metabolismo , Sítios de Ligação , Ativação Enzimática , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Subunidades Proteicas
20.
Biochem J ; 408(3): 363-73, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17714077

RESUMO

X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2beta which contacts at the centre of the CK2alpha/CK2beta interface dominates affinity. The results indicate that a double mutation in CK2beta of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2alpha, is the most disruptive to CK2alpha binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188-Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2beta-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Catálise , Cristalografia por Raios X , Primers do DNA , Células HeLa , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA