Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 150(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283046

RESUMO

In mammals, a near complete resetting of DNA methylation (DNAme) is observed during germline establishment. This wave of epigenetic reprogramming is sensitive to the environment, which could impair the establishment of an optimal state of the gamete epigenome, hence proper embryo development. Yet, we lack a comprehensive understanding of DNAme dynamics during spermatogenesis, especially in rats, the model of choice for toxicological studies. Using a combination of cell sorting and DNA methyl-seq capture, we generated a stage-specific mapping of DNAme in nine populations of differentiating germ cells from perinatal life to spermiogenesis. DNAme was found to reach its lowest level at gestational day 18, the last demethylated coding regions being associated with negative regulation of cell movement. The following de novo DNAme displayed three different kinetics with common and distinct genomic enrichments, suggesting a non-random process. DNAme variations were also detected at key steps of chromatin remodeling during spermiogenesis, revealing potential sensitivity. These methylome datasets for coding sequences during normal spermatogenesis in rat provide an essential reference for studying epigenetic-related effects of disease or environmental factors on the male germline.


Assuntos
Metilação de DNA , Células Germinativas , Masculino , Gravidez , Feminino , Ratos , Animais , Metilação de DNA/genética , Espermatogênese/genética , DNA , Epigenoma , Mamíferos/genética
2.
BMC Genomics ; 25(1): 541, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822259

RESUMO

BACKGROUND: Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS: Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS: Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.


Assuntos
Voo Animal , Espécies Introduzidas , Mariposas , Animais , Mariposas/genética , Mariposas/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Fenótipo , Transcriptoma , Complexo de Mariposas do Gênero Lymantria
3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928241

RESUMO

Human infection with the coronavirus disease 2019 (COVID-19) is mediated by the binding of the spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the human angiotensin-converting enzyme 2 (ACE2). The frequent mutations in the receptor-binding domain (RBD) of the spike protein induced the emergence of variants with increased contagion and can hinder vaccine efficiency. Hence, it is crucial to better understand the binding mechanisms of variant RBDs to human ACE2 and develop efficient methods to characterize this interaction. In this work, we present an approach that uses machine learning to analyze the molecular dynamics simulations of RBD variant trajectories bound to ACE2. Along with the binding free energy calculation, this method was used to characterize the major differences in ACE2-binding capacity of three SARS-CoV-2 RBD variants-namely the original Wuhan strain, Omicron BA.1, and the more recent Omicron BA.5 sublineages. Our analyses assessed the differences in binding free energy and shed light on how it affects the infectious rates of different variants. Furthermore, this approach successfully characterized key binding interactions and could be deployed as an efficient tool to predict different binding inhibitors to pave the way for new preventive and therapeutic strategies.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Sítios de Ligação , Mutação , Domínios e Motivos de Interação entre Proteínas
4.
BMC Genomics ; 24(1): 142, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959567

RESUMO

BACKGROUND: Genome assembly into chromosomes facilitates several analyses including cytogenetics, genomics and phylogenetics. Despite rapid development in bioinformatics, however, assembly beyond scaffolds remains challenging, especially in species without closely related well-assembled and available reference genomes. So far, four draft genomes of Rangifer tarandus (caribou or reindeer, a circumpolar distributed cervid species) have been published, but none with chromosome-level assembly. This emblematic northern species is of high interest in ecological studies and conservation since most populations are declining. RESULTS: We have designed specific probes based on Oligopaint FISH technology to upgrade the latest published reindeer and caribou chromosome-level genomes. Using this oligonucleotide-based method, we found six mis-assembled scaffolds and physically mapped 68 of the largest scaffolds representing 78% of the most recent R. tarandus genome assembly. Combining physical mapping and comparative genomics, it was possible to document chromosomal evolution among Cervidae and closely related bovids. CONCLUSIONS: Our results provide validation for the current chromosome-level genome assembly as well as resources to use chromosome banding in studies of Rangifer tarandus.


Assuntos
Cervos , Rena , Animais , Rena/genética , Cervos/genética , Genoma , Mapeamento Cromossômico , Cromossomos/genética
5.
BMC Plant Biol ; 23(1): 123, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869316

RESUMO

BACKGROUND: Emerald ash borer (Agrilus planipennis; EAB) is an Asian insect species that has been invasive to North America for 20 years. During this time, the emerald ash borer has killed tens of millions of American ash (Fraxinus spp) trees. Understanding the inherent defenses of susceptible American ash trees will provide information to breed new resistant varieties of ash trees. RESULTS: We have performed RNA-seq on naturally infested green ash (F. pennsylvanica) trees at low, medium and high levels of increasing EAB infestation and proteomics on low and high levels of EAB infestation. Most significant transcript changes we detected occurred between the comparison of medium and high levels of EAB infestation, indicating that the tree is not responding to EAB until it is highly infested. Our integrative analysis of the RNA-Seq and proteomics data identified 14 proteins and 4 transcripts that contribute most to the difference between highly infested and low infested trees. CONCLUSIONS: The putative functions of these transcripts and proteins suggests roles of phenylpropanoid biosynthesis and oxidation, chitinase activity, pectinesterase activity, strigolactone signaling, and protein turnover.


Assuntos
Besouros , Fraxinus , Animais , Floema , Melhoramento Vegetal , América do Norte , Árvores
6.
Genet Sel Evol ; 55(1): 47, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430194

RESUMO

BACKGROUND: The frequency of chromosomal rearrangements in Canadian breeding boars has been estimated at 0.91 to 1.64%. These abnormalities are widely recognized as a potential cause of subfertility in livestock production. Since artificial insemination is practiced in almost all intensive pig production systems, the use of elite boars carrying cytogenetic defects that have an impact on fertility can lead to major economic losses. To avoid keeping subfertile boars in artificial insemination centres and spreading chromosomal defects within populations, cytogenetic screening of boars is crucial. Different techniques are used for this purpose, but several issues are frequently encountered, i.e. environmental factors can influence the quality of results, the lack of genomic information outputted by these techniques, and the need for prior cytogenetic skills. The aim of this study was to develop a new pig karyotyping method based on fluorescent banding patterns. RESULTS: The use of 207,847 specific oligonucleotides generated 96 fluorescent bands that are distributed across the 18 autosomes and the sex chromosomes. Tested alongside conventional G-banding, this oligo-banding method allowed us to identify four chromosomal translocations and a rare unbalanced chromosomal rearrangement that was not detected by conventional banding. In addition, this method allowed us to investigate chromosomal imbalance in spermatozoa. CONCLUSIONS: The use of oligo-banding was found to be appropriate for detecting chromosomal aberrations in a Canadian pig nucleus and its convenient design and use make it an interesting tool for livestock karyotyping and cytogenetic studies.


Assuntos
Fertilidade , Genômica , Animais , Masculino , Suínos/genética , Canadá , Cariotipagem , Gado
7.
BMC Genomics ; 23(1): 687, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199020

RESUMO

BACKGROUND: Development of large single nucleotide polymorphism (SNP) arrays can make genomic data promptly available for conservation problematic. Medium and high-density panels can be designed with sufficient coverage to offer a genome-wide perspective and the generated genotypes can be used to assess different genetic metrics related to population structure, relatedness, or inbreeding. SNP genotyping could also permit sexing samples with unknown associated metadata as it is often the case when using non-invasive sampling methods favored for endangered species. Genome sequencing of wild species provides the necessary information to design such SNP arrays. We report here the development of a SNP-array for endangered Rangifer tarandus using a multi-platform sequencing approach from animals found in diverse populations representing the entire circumpolar distribution of the species. RESULTS: From a very large comprehensive catalog of SNPs detected over the entire sample set (N = 894), a total of 63,336 SNPs were selected. SNP selection accounted for SNPs evenly distributed across the entire genome (~ every 50Kb) with known minor alleles across populations world-wide. In addition, a subset of SNPs was selected to represent rare and local alleles found in Eastern Canada which could be used for ecotype and population assignments - information urgently needed for conservation planning. In addition, heterozygosity from SNPs located in the X-chromosome and genotyping call-rate of SNPs located into the SRY gene of the Y-chromosome yielded an accurate and robust sexing assessment. All SNPs were validated using a high-throughput SNP-genotyping chip. CONCLUSION: This design is now integrated into the first genome-wide commercially available genotyping platform for Rangifer tarandus. This platform would pave the way to future genomic investigation of populations for this endangered species, including estimation of genetic diversity parameters, population assignments, as well as animal sexing from genetic SNP data for non-invasive samples.


Assuntos
Polimorfismo de Nucleotídeo Único , Rena , Alelos , Animais , Mapeamento Cromossômico , Genótipo , Rena/genética
8.
Mol Ecol ; 28(6): 1476-1490, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30270494

RESUMO

Gene copy number variations (CNVs) involved in phenotypic variations have already been shown in plants, but genomewide testing of CNVs for adaptive variation was not doable until recent technological developments. Thus, reports of the genomic architecture of adaptation involving CNVs remain scarce to date. Here, we investigated F1 progenies of an intraprovenance cross (north-north cross, 58th parallel) and an interprovenances cross (north-south cross, 58th/49th parallels) for CNVs using comparative genomic hybridization on arrays of probes targeting gene sequences in balsam poplar (Populus balsamifera L.), a widespread North American forest tree. A total of 1,721 genes were found in varying copy numbers over the set of 19,823 tested genes. These gene CNVs presented an estimated average size of 8.3 kb and were distributed over poplar's 19 chromosomes including 22 hotspot regions. Gene CNVs number was higher for the interprovenance progeny in accordance with an expected higher genetic diversity related to the composite origin of this family. Regression analyses between gene CNVs and seven adaptive trait variations resulted in 23 significant links; among these adaptive gene CNVs, 30% were located in hotspots. One-to-five gene CNVs were found related to each of the measured adaptive traits and annotated for both biotic and abiotic stress responses. These annotations can be related to the occurrence of a higher pathogenic pressure in the southern parts of balsam poplar's distribution, and higher photosynthetic assimilation rates and water-use efficiency at high latitudes. Overall, our findings suggest that gene CNVs typically having higher mutation rates than SNPs may in fact represent efficient adaptive variations against fast-evolving pathogens.


Assuntos
Adaptação Fisiológica/genética , Variações do Número de Cópias de DNA/genética , Genoma/genética , Populus/genética , Hibridização Genômica Comparativa , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Populus/fisiologia
9.
BMC Genomics ; 18(1): 97, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100184

RESUMO

BACKGROUND: Copy number variations (CNVs) have been linked to different phenotypes in human, including many diseases. A genome-scale understanding of CNVs is available in a few plants but none are wild species, leaving a knowledge gap regarding their genome biology and evolutionary role. We developed a reliable CNV detection method for species lacking contiguous reference genome. We selected multiple probes within 14,078 gene sequences and developed comparative genome hybridization on arrays. Gene CNVs were assessed in three full-sib families from species with 20 Gb genomes, i.e., white and black spruce, and interior spruce - a natural hybrid. RESULTS: We discovered hundreds of gene CNVs in each species, 3612 in total, which were enriched in functions related to stress and defense responses and narrow expression profiles, indicating a potential role in adaptation. The number of shared CNVs was in accordance with the degree of relatedness between individuals and species. The genetically mapped subset of these genes showed a wide distribution across the genome, implying numerous structural variations. The hybrid family presented significantly fewer CNVs, suggesting that the admixture of two species within one genome reduces the occurrence of CNVs. CONCLUSIONS: The approach we developed is of particular interest in non-model species lacking a reference genome. Our findings point to a role for CNVs in adaptation. Their reduced abundance in the hybrid may limit genetic variability and evolvability of hybrids. We propose that CNVs make a qualitatively distinct contribution to adaptation which could be important for short term change.


Assuntos
Adaptação Fisiológica/genética , Variações do Número de Cópias de DNA , Genômica , Hibridização Genética/genética , Picea/genética , Picea/fisiologia , Reações Falso-Positivas , Genoma de Planta/genética
10.
Mol Ecol ; 26(21): 5989-6001, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833771

RESUMO

Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.


Assuntos
Mapeamento Cromossômico , Dosagem de Genes , Picea/genética , Adaptação Biológica/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Ligação Genética , Anotação de Sequência Molecular , Fenótipo , Quebeque
11.
New Phytol ; 209(1): 44-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26206592

RESUMO

Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.


Assuntos
Adaptação Fisiológica , Variação Genética , Genoma de Planta/genética , Genômica , Traqueófitas/genética , Evolução Biológica
12.
Mol Ecol ; 24(20): 5229-47, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26346701

RESUMO

The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor-derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.


Assuntos
Especiação Genética , Hibridização Genética , Picea/genética , DNA de Plantas/genética , Fluxo Gênico , Genes de Plantas , Genética Populacional , Genótipo , Picea/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Plant Cell Rep ; 34(12): 2111-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26260097

RESUMO

KEY MESSAGE: Measuring transcript levels for adaptive genes revealed polymorphisms having cis -effect upon gene expression levels related to phenotype variation in a black spruce natural population. Trees growing in temperate and boreal regions must acclimate to changes in climatic factors such as low winter temperatures to survive to seasonal variations. Common garden studies have shown that genetic variation in quantitative traits helps species to survive and adapt to environmental changes and local conditions. Twenty-four genes carrying SNPs were previously associated with genetic adaptation in black spruce (Picea mariana [Mill.] BSP). The objectives of this study were to investigate the potential role of these genes in regulation of winter acclimation and adaptation by studying their patterns of expression as a function of the physiological stage during the annual growth cycle, tissue type, and their SNP genotypic class. Considerable variability in gene expression was observed between different vegetative tissues or organs, and between physiological stages. The genes were expressed predominantly in tissues that could be linked more directly to winter acclimation and adaptation. The expression levels of several of the genes were significantly related to variation in tree height growth or budset timing and expression level variation related to SNP genotypic classes was observed in four of the genes. An interaction between genotypic classes and physiological stages was also observed for some genes, indicating genotypes with different reaction norms in terms of gene expression.


Assuntos
Aclimatação , Regulação da Expressão Gênica de Plantas , Picea/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Temperatura Baixa , Genótipo , Fenótipo , Picea/fisiologia , Estações do Ano
14.
BMC Genomics ; 14: 368, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23724860

RESUMO

BACKGROUND: The genomic architecture of adaptive traits remains poorly understood in non-model plants. Various approaches can be used to bridge this gap, including the mapping of quantitative trait loci (QTL) in pedigrees, and genetic association studies in non-structured populations. Here we present results on the genomic architecture of adaptive traits in black spruce, which is a widely distributed conifer of the North American boreal forest. As an alternative to the usual candidate gene approach, a candidate SNP approach was developed for association testing. RESULTS: A genetic map containing 231 gene loci was used to identify QTL that were related to budset timing and to tree height assessed over multiple years and sites. Twenty-two unique genomic regions were identified, including 20 that were related to budset timing and 6 that were related to tree height. From results of outlier detection and bulk segregant analysis for adaptive traits using DNA pool sequencing of 434 genes, 52 candidate SNPs were identified and subsequently tested in genetic association studies for budset timing and tree height assessed over multiple years and sites. A total of 34 (65%) SNPs were significantly associated with budset timing, or tree height, or both. Although the percentages of explained variance (PVE) by individual SNPs were small, several significant SNPs were shared between sites and among years. CONCLUSIONS: The sharing of genomic regions and significant SNPs between budset timing and tree height indicates pleiotropic effects. Significant QTLs and SNPs differed quite greatly among years, suggesting that different sets of genes for the same characters are involved at different stages in the tree's life history. The functional diversity of genes carrying significant SNPs and low observed PVE further indicated that a large number of polymorphisms are involved in adaptive genetic variation. Accordingly, for undomesticated species such as black spruce with natural populations of large effective size and low linkage disequilibrium, efficient marker systems that are predictive of adaptation should require the survey of large numbers of SNPs. Candidate SNP approaches like the one developed in the present study could contribute to reducing these numbers.


Assuntos
Adaptação Fisiológica/genética , Genômica , Picea/genética , Picea/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico , Clima , Frequência do Gene , Genótipo , Filogenia , Locos de Características Quantitativas/genética , Fatores de Tempo
15.
Epigenetics ; 18(1): 2280889, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016027

RESUMO

The current decline in dairy cattle fertility has resulted in significant financial losses for dairy farmers. In the past, most efforts to improve dairy cattle fertility have been focused on either management or genetics, while epigenetics have received less attention. In this study, 12 bulls were selected from a provided 100 bull list and studied (High daughter fertility = 6, Low daughter fertility = 6) for Enzymatic methylation sequencing in the Illumina HiSeq platform according to the Canadian daughter fertility index (DFI), sires with high and low daughter fertility have average DFI of 92 and 112.6, respectively. And the bull list provided shows a mean DFI of 103.4. 252 CpGs with methylation differences greater than 20% (q < 0.01) were identified, as well as the top 10 promising DMRs with a 15% methylation difference (q < 1.1e-26). Interestingly, the DMCs and DMRs were found to be distributed more on the X chromosome than on the autosome, and they were covered by gene clusters linked to germ cell formation and development. In conclusion, these findings could enhance our ability to make informed decisions when deciding on superior bulls and advance our understanding of paternal epigenetic inheritance.


Assuntos
Metilação de DNA , Sêmen , Bovinos/genética , Animais , Masculino , Núcleo Familiar , Canadá , Espermatozoides/metabolismo , Fertilidade/genética
16.
Mol Ecol ; 21(17): 4270-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22805595

RESUMO

In response to selective pressure, adaptation may follow different genetic pathways throughout the natural range of a species due to historical differentiation in standing genetic variation. Using 41 populations of black spruce (Picea mariana), the objectives of this study were to identify adaptive genetic polymorphisms related to temperature and precipitation variation across the transcontinental range of the species, and to evaluate the potential influence of historical events on their geographic distribution. Population structure was first inferred using 50 control nuclear markers. Then, 47 candidate gene SNPs identified in previous genome scans were tested for relationship with climatic factors using an F(ST) -based outlier method and regressions between allele frequencies and climatic variations. Two main intraspecific lineages related to glacial vicariance were detected at the transcontinental scale. Within-lineage analyses of allele frequencies allowed the identification of 23 candidate SNPs significantly related to precipitation and/or temperature variation, among which seven were common to both lineages, eight were specific to the eastern lineage and eight were specific to the western lineage. The implication of these candidate SNPs in adaptive processes was further supported by gene functional annotations. Multiple evidences indicated that the occurrence of lineage-specific adaptive SNPs was better explained by selection acting on historically differentiated gene pools rather than differential selection due to heterogeneity of interacting environmental factors and pleiotropic effects. Taken together, these findings suggest that standing genetic variation of potentially adaptive nature has been modified by historical events, hence affecting the outcome of recent selection and leading to different adaptive routes between intraspecific lineages.


Assuntos
Aclimatação/genética , Clima , Variação Genética , Genética Populacional , Picea/genética , Núcleo Celular/genética , DNA de Plantas/genética , Evolução Molecular , Frequência do Gene , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Chuva , Análise de Sequência de DNA , Temperatura
17.
Epigenetics ; 17(7): 705-714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34304691

RESUMO

This study evaluated the hypothesis that the maternal metabolic stressed status could be inherited to their F1 daughters via epigenetic mechanism. The maternal cow blood ß-hydroxybutyric acid (BHB) level (≥0.9 mM/L) was used as an indicator of maternal metabolic stress. Eight newborn daughters' blood cells were used for methylation comparison and analysis. By Whole Genome Bisulphite Sequencing (WGBS), a total of 1,861 Differentially Methylated Regions (DMRs), including 944 differentially methylated cytosines (DMCs), were identified. Most DMRs were distributed in intronic and intergenic regions, and most of the DMR in promoter regions were hypermethylated. Differentially methylated genes (DMGs) with DMR methylation differences higher than 20% were mainly enriched in metabolism-related pathways. These results suggest that newborn calves' metabolic pathways were altered, with 64 DMGs being clustered with metabolic signalling by KEGG analysis. Our study revealed the whole epigenetic landscape of calf blood cells and suggested that the maternal metabolic status can affect the embryo's epigenetic status and metabolic-related pathways in offspring, providing further evidence for epigenetic intergenerational inheritance of metabolic stress in domestic animals. Besides, this study also contributed more evidence to support the Developmental Origins of Health and Disease (DOHAD) theory in large animals.


Assuntos
Metilação de DNA , Genoma , Animais , Células Sanguíneas , Bovinos/genética , Epigênese Genética , Feminino , Sequenciamento Completo do Genoma
18.
Sci Rep ; 12(1): 8839, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614060

RESUMO

Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.


Assuntos
Etanol , Histonas , Lisina , Placenta , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Etanol/toxicidade , Feminino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
19.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34911809

RESUMO

Rangifer tarandus has experienced recent drastic population size reductions throughout its circumpolar distribution and preserving the species implies genetic diversity conservation. To facilitate genomic studies of the species populations, we improved the genome assembly by combining long read and linked read and obtained a new highly accurate and contiguous genome assembly made of 13,994 scaffolds (L90 = 131 scaffolds). Using de novo transcriptome assembly of RNA-sequencing reads and similarity with annotated human gene sequences, 17,394 robust gene models were identified. As copy number variations (CNVs) likely play a role in adaptation, we additionally investigated these variations among 20 genomes representing three caribou ecotypes (migratory, boreal and mountain). A total of 1,698 large CNVs (length > 1 kb) showing a genome distribution including hotspots were identified. 43 large CNVs were particularly distinctive of the migratory and sedentary ecotypes and included genes annotated for functions likely related to the expected adaptations. This work includes the first publicly available annotation of the caribou genome and the first assembly allowing genome architecture analyses, including the likely adaptive CNVs reported here.


Assuntos
Adaptação Biológica , Variações do Número de Cópias de DNA , Evolução Molecular , Rena/fisiologia , Animais , Biologia Computacional/métodos , Genoma , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único
20.
Front Immunol ; 13: 893792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812400

RESUMO

Coronavirus disease 19 (COVID-19) is the clinical manifestation of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection. A hallmark of COVID-19 is a lung inflammation characterized by an abundant leukocyte infiltrate, elevated levels of cytokines/chemokines, lipid mediators of inflammation (LMI) and microthrombotic events. Animal models are useful for understanding the pathophysiological events leading to COVID-19. One such animal model is the K18-ACE2 transgenic mice. Despite their importance in inflammation, the study of LMI in lung of SARS-CoV-2 infected K18-ACE2 mice has yet to be studied to our knowledge. Using tandem mass spectrometry, the lung lipidome at different time points of infection was analyzed. Significantly increased LMI included N-oleoyl-serine, N-linoleoyl-glycine, N-oleoyl-alanine, 1/2-linoleoyl-glycerol, 1/2-docosahexaenoyl-glycerol and 12-hydroxy-eicosapenatenoic acid. The levels of prostaglandin (PG) E1, PGF2α, stearoyl-ethanolamide and linoleoyl-ethanolamide were found to be significantly reduced relative to mock-infected mice. Other LMI were present at similar levels (or undetected) in both uninfected and infected mouse lungs. In parallel to LMI measures, transcriptomic and cytokine/chemokine profiling were performed. Viral replication was robust with maximal lung viral loads detected on days 2-3 post-infection. Lung histology revealed leukocyte infiltration starting on day 3 post-infection, which correlated with the presence of high concentrations of several chemokines/cytokines. At early times post-infection, the plasma of infected mice contained highly elevated concentration of D-dimers suggestive of blood clot formation/dissolution. In support, the presence of blood clots in the lung vasculature was observed during infection. RNA-Seq analysis of lung tissues indicate that SARS-CoV-2 infection results in the progressive modulation of several hundred genes, including several inflammatory mediators and genes related to the interferons. Analysis of the lung lipidome indicated modest, yet significant modulation of a minority of lipids. In summary, our study suggests that SARS-CoV-2 infection in humans and mice share common features, such as elevated levels of chemokines in lungs, leukocyte infiltration and increased levels of circulating D-dimers. However, the K18-ACE2 mouse model highlight major differences in terms of LMI being produced in response to SARS-CoV-2 infection. The potential reasons and impact of these differences on the pathology and therapeutic strategies to be employed to treat severe COVID-19 are discussed.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Quimiocinas , Citocinas , Modelos Animais de Doenças , Inflamação/patologia , Mediadores da Inflamação , Lipídeos , Pulmão/patologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA