Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immun Ageing ; 21(1): 19, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468336

RESUMO

BACKGROUND: Increased levels of pro-inflammatory proteins in plasma can be detected in older individuals and associate with the so called chronic low-grade inflammation, which contributes to a faster progression of aged-related cardiovascular (CV) diseases, including frailty, neurodegeneration, gastro-intestinal diseases and disorders reflected by alterations in the composition of gut microbiota. However, successful genetic programme of long-living individuals alters the trajectory of the ageing process, by promoting an efficient immune response that can counterbalance deleterious effects of inflammation and the CV complications. This is the case of BPIFB4 gene in which, homozygosity for a four single-nucleotide polymorphism (SNP) haplotype, the Longevity-Associated Variant (LAV) correlates with prolonged health span and reduced risk of CV complications and inflammation. The relation between LAV-BPIFB4 and inflammation has been proven in different experimental models, here we hypothesized that also human homozygous carriers of LAV-BPIFB4 gene may experience a lower inflammatory burden as detected by plasma proteomics that could explain their favourable CV risk trajectory over time. Moreover, we explored the therapeutic effects of LAV-BPIFB4 in inflammatory disease and monolayer model of intestinal barrier. RESULTS: We used high-throughput proteomic approach to explore the profiles of circulating proteins from 591 baseline participants selected from the PLIC cohort according to the BPIFB4 genotype to identify the signatures and differences of BPIFB4 genotypes useful for health and disease management. The observational analysis identified a panel of differentially expressed circulating proteins between the homozygous LAV-BPIFB4 carriers and the other alternative BPIFB4 genotypes highlighting in the latter ones a higher grade of immune-inflammatory markers. Moreover, in vitro studies performed on intestinal epithelial organs from inflammatory bowel disease (IBD) patients and monolayer model of intestinal barrier demonstrated the benefit of LAV-BPIFB4 treatment. CONCLUSIONS: Homozygosity for LAV-BPIFB4 results in the attenuation of inflammation in PLIC cohort and IBD patients providing preliminary evidences for its therapeutic use in inflammatory disorders that need to be further characterized and confirmed by independent studies.

2.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821533

RESUMO

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Assuntos
Homocistinúria , Metilenotetra-Hidrofolato Redutase (NADPH2) , Sirtuína 1 , Trombose , Animais , Genótipo , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Espasticidade Muscular , Transtornos Psicóticos/metabolismo , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Trombose/prevenção & controle
3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685989

RESUMO

The global population is experiencing an increase in ageing and life expectancy [...].


Assuntos
Centenários , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Envelhecimento/genética , Expectativa de Vida
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902151

RESUMO

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Assuntos
Plaquetas , COVID-19 , Humanos , Plaquetas/metabolismo , SARS-CoV-2 , COVID-19/metabolismo , Megacariócitos/metabolismo , Linhagem Celular
5.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047437

RESUMO

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Assuntos
Fragilidade , Longevidade , Humanos , Camundongos , Animais , Idoso , Longevidade/genética , Fragilidade/genética , Camundongos Endogâmicos C57BL , Epigênese Genética , Biomarcadores , Terapia Genética , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética
6.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34104945

RESUMO

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Humanos , Hipóxia , Miocárdio , Miócitos Cardíacos
7.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499641

RESUMO

Huntington's disease (HD) is caused by the production of mutant Huntingtin (mHTT), characterized by long polyglutamine repeats with toxic effects. There are currently no clinically validated therapeutic agents that slow or halt HD progression, resulting in a significant clinical unmet need. The striatum-derived STHdh cell line, generated from mHTT knock-in mouse embryos (STHdhQ111/Q111), represents a useful model to study mechanisms behind pathogenesis of HD and to investigate potential new therapeutic targets. Indeed, these cells show susceptibility to nucleolar stress, activated DNA damage response and apoptotic signals, and elevated levels of H3K9me3 that all together concur in the progressive HD pathogenesis. We have previously shown that the adeno-associated viral vector-mediated delivery of the longevity-associated variant (LAV) of BPIFB4 prevents HD progression in a mouse model of HD. Here, we show that LAV-BPIFB4 stably infected in STHdhQ111/Q111 cells reduces (i) nucleolar stress and DNA damage through the improvement of DNA repair machinery, (ii) apoptosis, through the inhibition of the caspase 3 death signaling, and (iii) the levels of H3K9me3, by accelerating the histone clearance, via the ubiquitin-proteasome pathway. These findings pave the way to propose LAV-BPIFB4 as a promising target for innovative therapeutic strategies in HD.


Assuntos
Doença de Huntington , Animais , Camundongos , Apoptose/genética , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Neostriado/metabolismo , Neuroproteção/genética , Variação Genética
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613555

RESUMO

We performed a genome-wide association study (GWAS) of human extreme longevity (EL), defined as surviving past the 99th survival percentile, by aggregating data from four centenarian studies. The combined data included 2304 EL cases and 5879 controls. The analysis identified a locus in CDKN2B-AS1 (rs6475609, p = 7.13 × 10-8) that almost reached genome-wide significance and four additional loci that were suggestively significant. Among these, a novel rare variant (rs145265196) on chromosome 11 had much higher longevity allele frequencies in cases of Ashkenazi Jewish and Southern Italian ancestry compared to cases of other European ancestries. We also correlated EL-associated SNPs with serum proteins to link our findings to potential biological mechanisms that may be related to EL and are under genetic regulation. The findings from the proteomic analyses suggested that longevity-promoting alleles of significant genetic variants either provided EL cases with more youthful molecular profiles compared to controls or provided some form of protection from other illnesses, such as Alzheimer's disease, and disease progressions.


Assuntos
Estudo de Associação Genômica Ampla , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Proteômica , Polimorfismo de Nucleotídeo Único , Alelos , Predisposição Genética para Doença
9.
Cytokine ; 137: 155305, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002742

RESUMO

A way to delay aging and the related low-grade chronic inflammatory state is to study the model of positive physiology such as the Long-Living Individuals (LLIs). Our recent studies have shown higher levels of the host defense BPI Fold-Containing Family B Member 4 (BPIFB4) protein in the LLIs' blood. Notably, BPIFB4 has been shown to influence monocytes typesetting and M2 anti-inflammatory phenotype (CD206+CD163++) macrophages skewing. According to the role of a complex cytokine milieu in guiding the macrophage polarization, here we found that circulating concentrations of thymus and activation regulated chemokine (TARC)/CCL17 and small-inducible cytokine B10 (IP-10)/CXCL10) cytokines, were additionally associated with the LLIs' state. In a differentiation process in vitro, the addition of LLIs' plasma to the cell culture medium, enhanced the ability of monocytes, either from LLIs or controls, to acquire a M2 phenotype. Interestingly, a neutralizing antibody against TARC blunted the M2 skewing effect of the LLIs' plasma. Collectively, these data indicate that exceptional longevity may associate with a peculiar anti-inflammatory myeloid profile responsible for improved reparative processes and reduced inflammatory status mediated in part by TARC and M2 generation.


Assuntos
Envelhecimento/sangue , Quimiocina CCL17/sangue , Longevidade , Macrófagos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CXCL10/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade
10.
Allergy ; 76(5): 1398-1415, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33043467

RESUMO

BACKGROUND: Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS: HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS: The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION: The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Animais , Butiratos , Hipersensibilidade Alimentar/prevenção & controle , Tolerância Imunológica , Leite Humano
11.
Aging Clin Exp Res ; 33(9): 2369-2377, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33170488

RESUMO

Bitter taste receptors (TAS2R) are involved in a variety of non-tasting physiological processes, including immune-inflammatory ones. Therefore, their genetic variations might influence various traits. In particular, in different populations of South Italy (Calabria, Cilento, and Sardinia), polymorphisms of TAS2R16 and TAS238 have been analysed in association with longevity with inconsistent results. A meta-analytic approach to quantitatively synthesize the possible effect of the previous variants and, possibly, to reconcile the inconsistencies has been used in the present paper. TAS2R38 variants in the Cilento population were also analysed for their possible association with longevity and the obtained data have been included in the relative meta-analysis. In population from Cilento no association was found between TAS2R38 and longevity, and no association was observed as well, performing the meta-analysis with data of the other studies. Concerning TAS2R16 gene, instead, the genotype associated with longevity in the Calabria population maintained its significance in the meta-analysis with data from Cilento population, that, alone, were not significant in the previously published study. In conclusion, our results suggest that TAS2R16 genotype variant is associated with longevity in South Italy.


Assuntos
Longevidade , Paladar , Genótipo , Humanos , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Paladar/genética
12.
Proc Natl Acad Sci U S A ; 115(15): E3388-E3397, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581312

RESUMO

S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.


Assuntos
Envelhecimento/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Envelhecimento/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Senescência Celular , Humanos , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Óxido Nítrico/metabolismo , Estresse Nitrosativo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo
13.
Eur Heart J ; 41(26): 2487-2497, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31289820

RESUMO

AIMS: Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. METHODS AND RESULTS: ApoE knockout mice (ApoE-/-) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE-/- mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1ß, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. CONCLUSION: Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Idoso , Animais , Apolipoproteínas E , Aterosclerose/genética , Espessura Intima-Media Carotídea , Feminino , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fosfoproteínas , Receptores CXCR4
14.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669501

RESUMO

People are living longer, not, as was previously the case, due to reduced child mortality, but because we are postponing the ill-health of old age [...].


Assuntos
Longevidade/fisiologia , Modelos Biológicos , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto , Dieta , Epigênese Genética , Saúde , Humanos , Longevidade/genética , Probióticos/farmacologia
15.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639203

RESUMO

In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.


Assuntos
Macrófagos/citologia , Músculo Esquelético/citologia , Doenças Musculares/terapia , Medicina Regenerativa , Células-Tronco/citologia , Animais , Humanos , Imunidade Inata , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Células-Tronco/fisiologia
16.
Diabetologia ; 63(12): 2699-2712, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32728892

RESUMO

AIMS/HYPOTHESIS: We aimed to analyse the association between plasma circulating microRNAs (miRNAs) and the immunometabolic profile in children with type 1 diabetes and to identify a composite signature of miRNAs/immunometabolic factors able to predict type 1 diabetes progression. METHODS: Plasma samples were obtained from children at diagnosis of type 1 diabetes (n = 88) and at 12 (n = 32) and 24 (n = 30) months after disease onset and from healthy control children with similar sex and age distribution (n = 47). We quantified 60 robustly expressed plasma circulating miRNAs by quantitative RT-PCR and nine plasma immunometabolic factors with a recognised role at the interface of metabolic and immune alterations in type 1 diabetes. Based on fasting C-peptide loss over time, children with type 1 diabetes were stratified into the following groups: those who had lost >90% of C-peptide compared with diagnosis level; those who had lost <10% of C-peptide; those showing an intermediate C-peptide loss. To evaluate the modulation of plasma circulating miRNAs during the course of type 1 diabetes, logistic regression models were implemented and the correlation between miRNAs and immunometabolic factors was also assessed. Results were then validated in an independent cohort of children with recent-onset type 1 diabetes (n = 18). The prognostic value of the identified plasma signature was tested by a neural network-based model. RESULTS: Plasma circulating miR-23~27~24 clusters (miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27a-3p and miR-27b-3p) were upmodulated upon type 1 diabetes progression, showed positive correlation with osteoprotegerin (OPG) and were negatively correlated with soluble CD40 ligand, resistin, myeloperoxidase and soluble TNF receptor in children with type 1 diabetes but not in healthy children. The combination of plasma circulating miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27b-3p and OPG, quantified at disease onset, showed a significant capability to predict the decline in insulin secretion 12 months after disease diagnosis in two independent cohorts of children with type 1 diabetes. CONCLUSIONS/INTERPRETATIONS: We have pinpointed a novel miR-23a-3p/miR-23b-3p/miR-24-3p/miR-27b-3p/OPG plasma signature that may be developed into a novel blood-based method to better stratify patients with type 1 diabetes and predict C-peptide loss.


Assuntos
Peptídeo C/sangue , Diabetes Mellitus Tipo 1/sangue , Complicações do Diabetes/sangue , Humanos , MicroRNAs/metabolismo , Osteoprotegerina/sangue
17.
Bioinformatics ; 35(17): 3046-3054, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624692

RESUMO

MOTIVATION: Over the last decade, more diverse populations have been included in genome-wide association studies. If a genetic variant has a varying effect on a phenotype in different populations, genome-wide association studies applied to a dataset as a whole may not pinpoint such differences. It is especially important to be able to identify population-specific effects of genetic variants in studies that would eventually lead to development of diagnostic tests or drug discovery. RESULTS: In this paper, we propose PopCluster: an algorithm to automatically discover subsets of individuals in which the genetic effects of a variant are statistically different. PopCluster provides a simple framework to directly analyze genotype data without prior knowledge of subjects' ethnicities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster suggests that the algorithm has a stable low false positive rate (∼4%) and high true positive rate (>80%) in simulations with large differences in allele frequencies between cases and controls. Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the phenotype. AVAILABILITY AND IMPLEMENTATION: PopCluster was implemented using the R programming language, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://github.com/gurinovich/PopCluster with instructions on its installation and usage. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Etnicidade , Estudo de Associação Genômica Ampla , Algoritmos , Humanos , Linguagens de Programação , Software , Tioléster Hidrolases
18.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998388

RESUMO

Aging is the most relevant risk factor for cardiovascular diseases which are the main cause of mortality in industrialized countries. In this context, there is a progressive loss of cardiovascular homeostasis that translates in illness and death. The study of long living individuals (LLIs), which show compression of morbidity toward the end of their life, is a valuable approach to find the key to delay aging and postpone associate cardiovascular events. A contribution to the age-related decline of cardiovascular system (CVS) comes from the immune system; indeed, it is dysfunctional during aging, a process described as immunosenescence and comprises the combination of several processes overpowering both innate and adaptative immune system. We have recently discovered a longevity-associated variant (LAV) in bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4), which is a secreted protein able to enhance endothelial function through endothelial nitric oxide synthase (eNOS) activation and capable to protect from hypertension, atherosclerosis, diabetic cardiopathy, frailty, and inflammaging. Here, we sum up the state of the art of the mechanisms involved in the main pathological processes related to CVD (atherosclerosis, aging, diabetic cardiopathy, and frailty) and shed light on the therapeutic effects of LAV-BPIFB4 in these contexts.


Assuntos
Aterosclerose/genética , Cardiomiopatias Diabéticas/genética , Fragilidade/genética , Hipertensão/genética , Imunossenescência/genética , Longevidade/genética , Fosfoproteínas/genética , Imunidade Adaptativa , Fatores Etários , Animais , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/prevenção & controle , Fragilidade/imunologia , Fragilidade/prevenção & controle , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Terapia Genética/métodos , Humanos , Hipertensão/imunologia , Hipertensão/prevenção & controle , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade/imunologia , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , Fosfoproteínas/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Fatores de Risco
19.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940853

RESUMO

Immune cell subsets and microRNAs have been independently proposed as type 1 diabetes (T1D) diagnostic and/or prognostic biomarkers. Here, we aimed to analyze the relationships between peripheral blood circulating immune cell subsets, plasmatic microRNAs, and T1D. Blood samples were obtained from both children with T1D at diagnosis and age-sex matched healthy controls. Then, immunophenotype assessed by flow cytometry was coupled with the quantification of 60 plasmatic microRNAs by quantitative RT-PCR. The associations between immune cell frequency, plasmatic microRNAs, and the parameters of pancreatic loss, glycemic control, and diabetic ketoacidosis were assessed by logistic regression models and correlation analyses. We found that the increase in specific plasmatic microRNAs was associated with T1D disease onset (let-7c-5p, let-7d-5p, let-7f-5p, let-7i-5p, miR-146a-5p, miR-423-3p, and miR-423-5p), serum C-peptide concentration (miR-142-5p and miR-29c-3p), glycated hemoglobin (miR-26a-5p and miR-223-3p) and the presence of ketoacidosis (miR-29c-3p) more strongly than the evaluated immune cell subset frequency. Some of these plasmatic microRNAs were shown to positively correlate with numbers of blood circulating B lymphocytes (miR-142-5p) and CD4+CD45RO+ (miR-146a-5p and miR-223-3p) and CD4+CD25+ cells (miR-423-3p and miR-223-3p) in children with T1D but not in healthy controls, suggesting a disease-specific microRNA association with immune dysregulation in T1D. In conclusion, our results suggest that, while blood co-circulating extracellular microRNAs and immune cell subsets may be biologically linked, microRNAs may better provide powerful information about T1D onset and severity.


Assuntos
Subpopulações de Linfócitos B , MicroRNA Circulante/sangue , Diabetes Mellitus Tipo 1/sangue , Biomarcadores/sangue , Criança , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Masculino
20.
Immun Ageing ; 16: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833980

RESUMO

BACKGROUND: Innate immunity utilizes components of sensory signal transduction such as bitter and sweet taste receptors. In fact, empirical evidence has shown bitter and sweet taste receptors to be an integral component of antimicrobial immune response in upper respiratory tract infections. Since an efficient immune response plays a key role in the attainment of longevity, it is not surprising that the rs978739 polymorphism of the bitter taste receptor TAS2R16 gene has been shown to be associated with longevity in a population of 941 individuals ranging in age from 20 to 106 years from Calabria (Italy). There are many possible candidate genes for human longevity, however of the many genes tested, only APOE and FOXO3 survived to association in replication studies. So, it is necessary to validate in other studies genes proposed to be associated with longevity. Thus, we analysed the association of the quoted polymorphism in a population of long lived individuals (LLIs) and controls from another Italian population from Cilento. METHODS: The analysis has been performed on data previously obtained with genome-wide association study on a population of LLIs (age range 90-109 years) and young controls (age range 18-45 years) from Cilento (Italy). RESULTS: Statistical power calculations showed that the analysed cohort represented by 410 LLIs and 553 young controls was sufficiently powered to replicate the association between rs978739 and the longevity phenotype according to the effect size and frequencies described in the previous paper, under a dominant and additive genetic model. However, no evidence of association between rs978739 and the longevity phenotype was observed according to the additive or dominant model. CONCLUSION: There are several reasons for the failure of the confirmation of a previous study. However, the differences between the two studies in terms of environment of the population adopted and of the criteria of inclusion have made difficult the replication of the findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA