Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1190559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383706

RESUMO

Objectives: The study aims to explore the most influential countries, institutions, journals, authors, "research hotspots," and trends in the study of the mechanism of liver regeneration (MoLR) in the last 20 years using bibliometric analyses. Methods: The literature associated with the MoLR was retrieved from the Web of Science Core Collection on 11 October 2022. CiteSpace 6.1.R6 (64-bit) and VOSviewer 1.6.18 were used for bibliometric analyses. Results: A total of 18,956 authors from 2,900 institutions in 71 countries/regions published 3,563 studies in different academic journals on the MoLR. The United States was the most influential country. The University of Pittsburgh was the institution from which most articles on the MoLR were published. Cunshuan Xu published the most articles on the MoLR, and George K. Michalopoulos was the most frequently co-cited author. Hepatology was the journal in which most articles on the MoLR were published and the most frequently co-cited journal in this field. The research hotspots for the MoLR were origin and subsets of hepatocytes during LR; new factors and pathways in LR regulation; cell therapy for LR; interactions between liver cells in LR; mechanism of the proliferation of residual hepatocytes and trans-differentiation between cells; and prognosis of LR. The emerging topic was the mechanism of regeneration of a severely injured liver. Conclusion: Our bibliometric analyses provide (i) a comprehensive overview of the MoLR; (ii) important clues and ideas for scholars in this field.

2.
J Ethnopharmacol ; 311: 116419, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003405

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Huayu formula (FZHY), composed of Salvia miltiorrhiza Bunge, Cordyceps sinensis, the seed of Prunus persica (L.) Batsch, the pollen of Pinus massoniana Lamb, Gynostemma pentaphyllum (Thunb.) Makino and the fruit of Schisandra chinensis (Turcz.) Baill, is a Chinese herbal compound with demonstrated clinical benefits in liver fibrosis (LF). However, its potential mechanism and molecular targets remain to be elucidated. AIM OF THE STUDY: This study was designed to evaluate the anti-fibrotic role of FZHY in hepatic fibrosis and to elucidate the potential mechanisms. MATERIALS AND METHODS: Network pharmacology was assayed to identify the interrelationships among compounds of FZHY, potential targets and putative pathways on anti-LF. Then the core pharmaceutical target for FZHY against LF was verified by serum proteomic analysis. Further in vivo and in vitro assays were performed to verify the prediction of the pharmaceutical network. RESULTS: The network pharmacology analysis revealed that a total of 175 FZHY-LF crossover proteins were filtered into a protein-protein interaction (PPI) network complex and designated as the potential targets of FZHY against LF, and the Epidermal Growth Factor Receptor (EGFR) signaling pathway was further explored according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then analytical studies were validated by carbon tetrachloride (CCl4)-induced model in vivo. We found FZHY could attenuate CCl4-induced LF, especially decrease p-EGFR expression in α-Smooth Muscle Actin (α-SMA)-positive hepatic stellate cell (HSC) and inhibit the downstream of the EGFR signaling pathway, especially Extracellular Regulated Protein Kinases (ERK) signaling pathway in liver tissue. We further demonstrate that FZHY could inhibit Epidermal Growth Factor (EGF)-induced HSC activation, as well as the expression of p-EGFR and the key protein of the ERK signaling pathway. CONCLUSIONS: FZHY has a good effect against CCl4-induced LF. The action mechanism was associated with the down-regulation of the EGFR signaling pathway in activated HSCs.


Assuntos
Tetracloreto de Carbono , Medicamentos de Ervas Chinesas , Humanos , Tetracloreto de Carbono/farmacologia , Proteômica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Transdução de Sinais , Receptores ErbB/metabolismo
3.
Front Pharmacol ; 13: 999604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204239

RESUMO

Organ fibrosis is a common pathological change that finally results in organ failure, which involves the destruction of parenchyma cells, the activation of mesenchymal cells and the imbalance of immunological cells. In recent years, although some breakthroughs have been made in understanding the pathogenesis and therapeutics of organ fibrosis, no registered drugs could directly target the fibrotic process, which constitutes a major biomedical challenge. Salvia miltiorrhiza (SM) is a well-known medicinal plant in China, which has been widely applied because of its pharmacological effects on anti-oxidative, anti-myocardial infarction, anti-fibrotic, anti-inflammatory, and anti-neoplastic properties. Accumulated evidence suggested that SM played critical roles against organ fibrosis in vivo and in vitro experiments by its multiple biological compounds. In this review, we discussed the recent advances on the phytochemistry and pharmacological mechanisms of SM and its active ingredients in liver, lung, kidney, and heart fibrosis, which might help to promote the treatment of fibrotic diseases in thorax and abdomainal viscera in clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA