Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024330

RESUMO

Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.

2.
J Cell Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686599

RESUMO

Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.

3.
Thorax ; 79(7): 615-623, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38388490

RESUMO

BACKGROUND: There is growing interest in the joint effects of hazardous trace elements (HTEs) on lung function deficits, but the data are limited. This is a critical research gap given increased global industrialisation. METHODS: A national cross-sectional study including spirometry was performed among 2112 adults across 11 provinces in China between 2020 and 2021. A total of 27 HTEs were quantified from urine samples. Generalised linear models and quantile-based g-computation were used to explore the individual and joint effects of urinary HTEs on lung function, respectively. RESULTS: Overall, there were negative associations between forced expiratory volume in 1 s (FEV1) and urinary arsenic (As) (z-score coefficient, -0.150; 95% CI, -0.262 to -0.038 per 1 ln-unit increase), barium (Ba) (-0.148, 95% CI: -0.258 to -0.039), cadmium (Cd) (-0.132, 95% CI: -0.236 to -0.028), thallium (Tl) (-0.137, 95% CI: -0.257 to -0.018), strontium (Sr) (-0.147, 95% CI: -0.273 to -0.022) and lead (Pb) (-0.121, 95% CI: -0.219 to -0.023). Similar results were observed for forced vital capacity (FVC) with urinary As, Ba and Pb and FEV1/FVC with titanium (Ti), As, Sr, Cd, Tl and Pb. We found borderline associations between the ln-quartile of joint HTEs and decreased FEV1 (-20 mL, 95% CI: -48 to +8) and FVC (-14 mL, 95% CI: -49 to+2). Ba and Ti were assigned the largest negative weights for FEV1 and FVC within the model, respectively. CONCLUSION: Our study investigating a wide range of HTEs in a highly polluted setting suggests that higher urinary HTE concentrations are associated with lower lung function, especially for emerging Ti and Ba, which need to be monitored or regulated to improve lung health.


Assuntos
Exposição Ambiental , Oligoelementos , Humanos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , China/epidemiologia , Oligoelementos/urina , Adulto , Volume Expiratório Forçado , Espirometria , Capacidade Vital , Pulmão/fisiopatologia , Idoso
4.
Small ; : e2401656, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994827

RESUMO

Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.

5.
Environ Res ; 248: 118305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307183

RESUMO

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Assuntos
Microbioma Gastrointestinal , Ileíte , Camundongos , Animais , Disbiose , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Ácidos Graxos/metabolismo
6.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718725

RESUMO

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Assuntos
Molibdênio , Molibdênio/urina , Molibdênio/toxicidade , Molibdênio/análise , Humanos , China/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Cistatina C , Medição de Risco , Poluentes Ambientais/urina , Poluentes Ambientais/análise , Adulto Jovem , Teorema de Bayes , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Idoso , Indústria Química , Rim/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos
7.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792078

RESUMO

Disuse muscle atrophy (DMA) is a significant healthcare challenge characterized by progressive loss of muscle mass and function resulting from prolonged inactivity. The development of effective strategies for muscle recovery is essential. In this study, we established a DMA mouse model through hindlimb suspension to evaluate the therapeutic potential of lactate in alleviating the detrimental effects on the gastrocnemius muscle. Using NMR-based metabolomic analysis, we investigated the metabolic changes in DMA-injured gastrocnemius muscles compared to controls and evaluated the beneficial effects of lactate treatment. Our results show that lactate significantly reduced muscle mass loss and improved muscle function by downregulating Murf1 expression, decreasing protein ubiquitination and hydrolysis, and increasing myosin heavy chain levels. Crucially, lactate corrected perturbations in four key metabolic pathways in the DMA gastrocnemius: the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; histidine metabolism; and arginine and proline metabolism. In addition to phenylalanine-related pathways, lactate also plays a role in regulating branched-chain amino acid metabolism and energy metabolism. Notably, lactate treatment normalized the levels of eight essential metabolites in DMA mice, underscoring its potential as a therapeutic agent against the consequences of prolonged inactivity and muscle wasting. This study not only advances our understanding of the therapeutic benefits of lactate but also provides a foundation for novel treatment approaches aimed at metabolic restoration and muscle recovery in conditions of muscle wasting.


Assuntos
Ácido Láctico , Metabolômica , Músculo Esquelético , Animais , Camundongos , Metabolômica/métodos , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética , Masculino , Proteínas Musculares/metabolismo , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/tratamento farmacológico , Transtornos Musculares Atróficos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Metaboloma/efeitos dos fármacos , Elevação dos Membros Posteriores , Proteínas com Motivo Tripartido/metabolismo , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo
8.
Water Sci Technol ; 89(11): 3104-3121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877633

RESUMO

Coastal wetlands are the main distribution of blue carbon in coastal zones and well known for their high carbon sequestration capacity. Investigating the variation of carbon budget is crucial for understanding the functionality of coastal wetlands and effectively addressing climate change. In this study, a bibliometric analysis of 4,509 articles was conducted to reveal research progress, hot issues, and emerging trends in the coastal wetland carbon budget field. The number of publications and citations in this field increased exponentially from 1991 to 2022. The leading subject category was Environmental Sciences with 1,844 articles (40.9%). At present, studies have been focused on blue carbon, the effects of climate change and man-made disturbances on carbon cycle, and the restoration of coastal wetlands. Based on the hotspots and trends in this field, the future researches should include (1) exploring the functional mechanisms of various factors affecting carbon cycle and establishing a methodological system for the estimation of blue carbon in coastal wetlands; (2) researching restoration techniques of coastal wetland and constructing wetland restoration evaluation index system; and (3) formulating enforceable carbon trading policy and strengthening international cooperation.


Assuntos
Bibliometria , Carbono , Áreas Alagadas , Carbono/metabolismo , Mudança Climática
9.
Angew Chem Int Ed Engl ; : e202407385, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736176

RESUMO

Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.

10.
Pediatr Res ; 93(7): 2061-2066, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36307525

RESUMO

INTRODUCTION: Underimmunization of CHD children is a public health concern in China. This study aimed to analyze the vaccination status of CHD children to provide additional evidence on optimal vaccination strategies and to make suggestions to promote appropriate vaccination services for these children. METHODS: This cross-sectional study evaluated 155 CHD children who received at least one vaccine at Peking University First Hospital. Vaccine-specific immunization rates were calculated. A telephone questionnaire survey was conducted that covered the following: the prognosis, reasons for delayed vaccinations and getting vaccination in the hospital. All statistical analyses were performed using the SPSS version 22 software. RESULTS: The left-to-right shunt group involved 138 children, while the other type CHD group involved 17. The vaccination rate was the highest for MPSV-AC (87.1%) and the lowest for DTaP (40.1%). The most frequent reason for vaccination in the hospital was refusal from community health centers (61.5%). No participant reported vaccine-related adverse effects. CONCLUSIONS: The age-appropriate vaccine-specific immunization rates in CHD children are low, with the lowest for DTaP. Refusal of community health centers was the primary reason. Our findings support that clinically stable CHD children may be safely vaccinated on a schedule similar to that of ordinary children in China. IMPACT: From our investigation, we found that the age-appropriate vaccine-specific immunization rates in children with CHD in China are low, with the lowest for diphtheria and tetanus toxoid and acellular pertussis. Refusal of community health centers to vaccinate was the primary reason for the low rates. We believe our study provides additional evidence on optimal vaccination strategies for children with CHD and it can be used to develop strategies to promote appropriate vaccination services for these children.


Assuntos
Cardiopatias Congênitas , Coqueluche , Humanos , Criança , Lactente , Estudos Transversais , Vacinação , Vacina contra Difteria, Tétano e Coqueluche/efeitos adversos , Hospitais
11.
J Pineal Res ; 74(3): e12858, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732033

RESUMO

Increasing carbon dioxide (CO2 ) promotes photosynthesis and mitigates heat stress-induced deleterious effects on plants, but the regulatory mechanisms remain largely unknown. Here, we found that tomato (Solanum lycopersicum L.) plants treated with high atmospheric CO2 concentrations (600, 800, and 1000 µmol mol-1 ) accumulated increased levels of melatonin (N-acetyl-5-methoxy tryptamine) in their leaves and this response is conserved across many plant species, including Arabidopsis, rice, wheat, mustard, cucumber, watermelon, melon, and hot pepper. Elevated CO2 (eCO2 ; 800 µmol mol-1 ) caused a 6.8-fold increase in leaf melatonin content, and eCO2 -induced melatonin biosynthesis preferentially occurred through chloroplast biosynthetic pathways in tomato plants. Crucially, manipulation of endogenous melatonin levels by genetic means affected the eCO2 -induced accumulation of sugar and starch in tomato leaves. Furthermore, net photosynthetic rate, maximum photochemical efficiency of photosystem II, and transcript levels of chloroplast- and nuclear-encoded photosynthetic genes, such as rbcL, rbcS, rbcA, psaD, petB, and atpA, significantly increased in COMT1 overexpressing (COMT1-OE) tomato plants, but not in melatonin-deficient comt1 mutants at eCO2 conditions. While eCO2 enhanced plant tolerance to heat stress (42°C) in wild-type and COMT1-OE, melatonin deficiency compromised eCO2 -induced thermotolerance in comt1 plants. The expression of heat shock proteins genes increased in COMT1-OE but not in comt1 plants in response to eCO2 under heat stress. Further analysis revealed that eCO2 -induced thermotolerance was closely linked to the melatonin-dependent regulation of reactive oxygen species, redox homeostasis, cellular protein protection, and phytohormone metabolism. This study unveiled a crucial mechanism of elevated CO2 -induced thermotolerance in which melatonin acts as an essential endogenous signaling molecule in tomato plants.


Assuntos
Melatonina , Solanum lycopersicum , Termotolerância , Dióxido de Carbono/metabolismo , Fotossíntese
12.
Environ Sci Technol ; 57(21): 7938-7949, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37202343

RESUMO

Obesity is prevalent in rural areas of China, and there are inconsistent findings regarding the association between metal(loid) exposure and the risk of obesity. Abdominal obesity (AOB), which reflects visceral fat abnormity, is a crucial factor in studying obesity-related diseases. We conducted a study measuring 20 urinary metal(loid)s, 13 health indicators, and the waist circumference (WC) in 1849 participants from 10 rural areas of China to investigate their relationships. In the single exposure models, we found that urinary chromium (Cr) was significantly associated with the odds of having AOB [adjusted odds ratio (OR) = 1.81 (95% confidence interval (CI): 1.24, 2.60)]. In the mixture exposure models, urinary Cr consistently emerged as the top contributor to AOB, while the overall effect of mixed metal(loid)s was positive toward the odds of having AOB [adjusted OR: 1.33 (95% CI: 1.00, 1.77)], as revealed from the quantile g-computation model. After adjusting for the effects of other metal(loid)s, we found that the elevation of apolipoprotein B and systolic blood pressure significantly mediated the association between urinary Cr and the odds of having AOB by 9.7 and 19.4%, respectively. Our results suggest that exposure to metal(loid)s is a key factor contributing to the prevalence of AOB and WC gain in rural areas of China.


Assuntos
Metaloides , Metais Pesados , Humanos , Obesidade Abdominal/epidemiologia , Metais/análise , Obesidade/epidemiologia , Cromo , China/epidemiologia , Gordura Abdominal/química , Medição de Risco , Monitoramento Ambiental/métodos
13.
Mar Drugs ; 22(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38248643

RESUMO

Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.


Assuntos
Quitosana , Micelas , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Oxirredução
14.
Sheng Li Xue Bao ; 75(4): 497-502, 2023 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-37583036

RESUMO

In this study, we used a rat model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) to investigate the role and mechanism of angiotensin (Ang)-(1-7) in regulating pulmonary artery diastolic function. Three weeks after subcutaneous injection of MCT or normal saline, the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of rats were detected using a right heart catheter. Vascular endothelium-dependent relaxation was evaluated by acetylcholine (ACh)-induced vasodilation. The relaxation function of vascular smooth muscle was evaluated by sodium nitroprusside (SNP)-induced vasodilation. Human pulmonary artery endothelial cells (HPAECs) were incubated with Ang-(1-7) to measure nitric oxide (NO) release levels. The results showed that compared with control rats, RVSP and RVHI were significantly increased in the MCT-PAH rats, and both ACh or SNP-induced vasodilation were worsened. Incubation of pulmonary artery of MCT-PAH rats with Ang-(1-7) (1 × 10-9-1 × 10-4 mol/L) caused significant vaso-relaxation. Pre-incubation of Ang-(1-7) in the pulmonary artery of MCT-PAH rats significantly improved ACh-induced endothelium-dependent relaxation, but had no significant effect on SNP-induced endothelium-independent relaxation. In addition, Ang-(1-7) treatment significantly increased NO levels in HPAECs. The Mas receptor antagonist A-779 inhibited the effects of Ang-(1-7) on endothelium-dependent relaxation and NO release from endothelial cells. The above results demonstrate that Ang-(1-7) promotes the release of NO from endothelial cells by activating Mas receptor, thereby improving the endothelium-dependent relaxation function of PAH pulmonary arteries.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Vasodilatação , Monocrotalina/toxicidade , Ratos Sprague-Dawley , Hipertensão Pulmonar/induzido quimicamente , Células Endoteliais , Artéria Pulmonar , Endotélio , Acetilcolina/farmacologia , Nitroprussiato/farmacologia
15.
J Am Chem Soc ; 144(37): 16778-16791, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36054824

RESUMO

The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.

16.
RNA Biol ; 19(1): 1172-1178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350790

RESUMO

No current RNA-targeted interference tools have been reported to simultaneously up and down-regulate different gene expressions. Here we characterized an RNA-targeted genetic regulatory strategy composed of a flap endonuclease 1 (FEN1) and specific mis-hairpin DNA probes (mis-hpDNA), to realize the orthogonal genetic regulation. By targeting mRNA, the strategy hindered the translation and silenced genes in human cells with efficiencies of ~60%. By targeting miRNA, the strategy prevented the combination of miRNA to its specific mRNA and increased this mRNA expression by about 3-folds. In combination, we simultaneously performed CXCR4 gene knock-down (~50%) and EGFR gene activation (1.5-folds) in human cells. Although the functional property can be further improved, this RNA-targeted orthogonal genetic regulating strategy is complementary to classical tools.


Assuntos
MicroRNAs , Humanos , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Técnicas de Silenciamento de Genes , Transdução de Sinais , RNA Mensageiro/genética
17.
Nucleic Acids Res ; 48(20): e117, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051689

RESUMO

Here, we characterized a flap endonuclease 1 (FEN1) plus hairpin DNA probe (hpDNA) system, designated the HpSGN system, for both DNA and RNA editing without sequence limitation. The compact size of the HpSGN system make it an ideal candidate for in vivo delivery applications. In vitro biochemical studies showed that the HpSGN system required less nuclease to cleave ssDNA substrates than the SGN system we reported previously by a factor of ∼40. Also, we proved that the HpSGN system can efficiently cleave different RNA targets in vitro. The HpSGN system cleaved genomic DNA at an efficiency of ∼40% and ∼20% in bacterial and human cells, respectively, and knocked down specific mRNAs in human cells at a level of ∼25%. Furthermore, the HpSGN system was sensitive to the single base mismatch at the position next to the hairpin both in vitro and in vivo. Collectively, this study demonstrated the potential of developing the HpSGN system as a small, effective, and specific editing tool for manipulating both DNA and RNA without sequence limitation.


Assuntos
Archaeoglobus fulgidus/enzimologia , Endonucleases Flap/metabolismo , Edição de Genes/métodos , Sequências Repetidas Invertidas , Edição de RNA , Archaeoglobus fulgidus/genética , Pareamento Incorreto de Bases , DNA/química , Sondas de DNA/química , Sondas de DNA/genética , DNA de Cadeia Simples , Escherichia coli/genética , Endonucleases Flap/química , Endonucleases Flap/genética , Endonucleases Flap/isolamento & purificação , Células HEK293 , Humanos , Técnicas In Vitro , Conformação de Ácido Nucleico , RNA/química , Especificidade por Substrato
18.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34908398

RESUMO

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

19.
Toxicol Appl Pharmacol ; 431: 115733, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34599948

RESUMO

The formation of fat-laden foam cells plays an important role in the initiation and progression of atherosclerosis (AS). Amentoflavone (AF) is found in various traditional Chinese medicines, such as ginkgo biloba, which are used to treat cardiovascular diseases (CVDs). We aimed to explore the potential effects and mechanisms of AF on lipid accumulation, and its possible application in atherosclerotic cardiovascular disease (ASCVD). Cellular models of lipid accumulation were established by treatment of HUASMCs and THP-1 cells with oxidized low-density lipoprotein (ox-LDL). Cell viability, lipid accumulation, and ox-LDL uptake were assessed. Small interfering RNAs (siRNAs) and overexpression plasmids were used to reveal the hierarchical correlations of regulatory pathways. AF reduced the lipid accumulation and ox-LDL uptake induced by ox-LDL, and reduced the expression levels of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor gamma (PPARγ) proteins, while the expression level of ATP binding cassette subfamily A member 1 (ABCA1) increased. Knockdown of PPARγ or CD36 with siRNAs prevented ox-LDL-induced lipid accumulation. Overexpression of CD36 or PPARγ promoted the lipid accumulation induced by ox-LDL and eliminated the effect of AF on ox-LDL-induced lipid accumulation. Overall, AF prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signaling pathway.


Assuntos
Aterosclerose/prevenção & controle , Biflavonoides/farmacologia , Antígenos CD36/metabolismo , Células Espumosas/efeitos dos fármacos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/genética , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/genética , Placa Aterosclerótica , Transdução de Sinais , Células THP-1
20.
Environ Res ; 200: 111434, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087194

RESUMO

BACKGROUND: Urban greenness may protect against obesity, but very few studies have assessed 'street view' (SV) greenness metrics, which may better capture people's actual exposure to greenness compared to commonly-used satellite-derived metrics. We aimed to investigate these associations further in a Chinese adult study. METHODS: Our analysis included 24,845 adults in the 33 Chinese Community Health Study in 2009. SV images from Tencent Map, segmented by machine learning algorithms, were used to determine the average proportion of green vegetation in SV images at community level in 800m road network buffer. Sensitivity analyses were performed with an alternative buffer size. Overall greenness was assessed as normalized difference vegetation index (NDVI) in 800 m buffer. We used predicted PM2.5 and monitored NO2 as proxies of air pollution. Body mass index (BMI), waist circumference (WC) and hip circumference (HC) were regressed on SV greenness by generalized linear mixed models, with adjustment for covariates. Mediation analyses were performed to assess the mediation effects of air pollution. RESULTS: Each interquartile range (IQR = 3.6%) increase in street view greenness was associated with a 0.15 kg/m2 (95% CI: -0.22, -0.09) decrease in BMI and 0.23 cm (95% CI: -0.35, -0.11) reduction in HC, and was associated with 7% lower odds of overweight (OR = 0.93, 95% CI:0.90, 0.96) and 18% lower odds of obesity (OR = 0.82, 95% CI:0.76, 0.89). Similar effect estimation was observed compared with commonly-used NDVI measures. PM2.5 and NO2 mediated 15.5% and 6.1% of the effects of SV greenness with BMI, respectively. CONCLUSIONS: Our findings suggest beneficial associations between community-level SV greenness and lower body weight in Chinese adults. The effects were observed in women but not in men. Air pollution may partially mediate the association. These findings may have implications to support efforts to promote greening in urban areas.


Assuntos
Poluição do Ar , Saúde Pública , Adulto , Poluição do Ar/análise , Índice de Massa Corporal , China/epidemiologia , Feminino , Humanos , Masculino , Obesidade/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA