Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 138(3): 592-603, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665978

RESUMO

Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. We found 37 microRNAs that were differentially expressed between human BCSCs and nontumorigenic cancer cells. Three clusters, miR-200c-141, miR-200b-200a-429, and miR-183-96-182 were downregulated in human BCSCs, normal human and murine mammary stem/progenitor cells, and embryonal carcinoma cells. Expression of BMI1, a known regulator of stem cell self-renewal, was modulated by miR-200c. miR-200c inhibited the clonal expansion of breast cancer cells and suppressed the growth of embryonal carcinoma cells in vitro. Most importantly, miR-200c strongly suppressed the ability of normal mammary stem cells to form mammary ducts and tumor formation driven by human BCSCs in vivo. The coordinated downregulation of three microRNA clusters and the similar functional regulation of clonal expansion by miR-200c provide a molecular link that connects BCSCs with normal stem cells.


Assuntos
Neoplasias da Mama/genética , Mama/citologia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Células-Tronco de Carcinoma Embrionário/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
N Engl J Med ; 374(3): 211-22, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26789870

RESUMO

Background The identification of high-risk stage II colon cancers is key to the selection of patients who require adjuvant treatment after surgery. Microarray-based multigene-expression signatures derived from stem cells and progenitor cells hold promise, but they are difficult to use in clinical practice. Methods We used a new bioinformatics approach to search for biomarkers of colon epithelial differentiation across gene-expression arrays and then ranked candidate genes according to the availability of clinical-grade diagnostic assays. With the use of subgroup analysis involving independent and retrospective cohorts of patients with stage II or stage III colon cancer, the top candidate gene was tested for its association with disease-free survival and a benefit from adjuvant chemotherapy. Results The transcription factor CDX2 ranked first in our screening test. A group of 87 of 2115 tumor samples (4.1%) lacked CDX2 expression. In the discovery data set, which included 466 patients, the rate of 5-year disease-free survival was lower among the 32 patients (6.9%) with CDX2-negative colon cancers than among the 434 (93.1%) with CDX2-positive colon cancers (hazard ratio for disease recurrence, 3.44; 95% confidence interval [CI], 1.60 to 7.38; P=0.002). In the validation data set, which included 314 patients, the rate of 5-year disease-free survival was lower among the 38 patients (12.1%) with CDX2 protein-negative colon cancers than among the 276 (87.9%) with CDX2 protein-positive colon cancers (hazard ratio, 2.42; 95% CI, 1.36 to 4.29; P=0.003). In both these groups, these findings were independent of the patient's age, sex, and tumor stage and grade. Among patients with stage II cancer, the difference in 5-year disease-free survival was significant both in the discovery data set (49% among 15 patients with CDX2-negative tumors vs. 87% among 191 patients with CDX2-positive tumors, P=0.003) and in the validation data set (51% among 15 patients with CDX2-negative tumors vs. 80% among 106 patients with CDX2-positive tumors, P=0.004). In a pooled database of all patient cohorts, the rate of 5-year disease-free survival was higher among 23 patients with stage II CDX2-negative tumors who were treated with adjuvant chemotherapy than among 25 who were not treated with adjuvant chemotherapy (91% vs. 56%, P=0.006). Conclusions Lack of CDX2 expression identified a subgroup of patients with high-risk stage II colon cancer who appeared to benefit from adjuvant chemotherapy. (Funded by the National Comprehensive Cancer Network, the National Institutes of Health, and others.).


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/genética , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Análise de Variância , Biomarcadores Tumorais/genética , Fator de Transcrição CDX2 , Quimioterapia Adjuvante , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Biologia Computacional , Bases de Dados Genéticas , Intervalo Livre de Doença , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Mensageiro/metabolismo , Estudos Retrospectivos
3.
Nature ; 501(7467): 380-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24025767

RESUMO

Down's syndrome results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, which are trisomic for 132 genes homologous to genes on human chromosome 21, triplication of Usp16 reduces the self-renewal of haematopoietic stem cells and the expansion of mammary epithelial cells, neural progenitors and fibroblasts. In addition, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from histone H2A on lysine 119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal Usp16 allele or by short interfering RNAs, largely rescues all of these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and postnatal neural progenitors, whereas downregulation of USP16 partially rescues the proliferation defects of Down's syndrome fibroblasts. Taken together, these results suggest that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down's syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.


Assuntos
Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Ubiquitina Tiolesterase/metabolismo , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Proliferação de Células , Senescência Celular , Cromossomos Humanos Par 21/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Epitélio/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Dosagem de Genes , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Terapia de Alvo Molecular , Trissomia/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação
4.
Breast Cancer Res ; 20(1): 121, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305179

RESUMO

BACKGROUND: Recent studies in murine mammary tissue have identified functionally distinct cell populations that may be isolated by surface phenotype or lineage tracing. Previous groups have shown that CD24medCD49fhigh cells enriched for long-lived mammary epithelial cells can be serially transplanted. METHODS: Flow cytometry-based enrichment of distinct phenotypic populations was assessed for their gene expression profiles and functional proliferative attributes in vitro and in vivo. RESULTS: Here, we show Thy-1 is differentially expressed in the CD24medCD49fhigh population, which allowed us to discern two functionally different populations. The Thy-1+CD24medCD49fhigh phenotype contained the majority of the serially transplantable epithelial cells. The Thy-1-CD24medCD49fhigh phenotype contains a rare progenitor population that is able to form primary mammary outgrowths with significantly decreased serial in vivo transplantation potential. CONCLUSIONS: Therefore, Thy-1 expression in the immature cell compartment is a useful tool to study the functional heterogeneity that drives mammary gland development and has implications for disease etiology.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Antígenos Thy-1/genética , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Células Epiteliais/transplante , Feminino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Antígenos Thy-1/metabolismo
5.
Nature ; 458(7239): 780-3, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19194462

RESUMO

The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Neoplasias da Mama/fisiopatologia , Células Cultivadas , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Feminino , Expressão Gênica , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Nature ; 453(7192): 228-32, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18418377

RESUMO

Haematopoiesis is maintained by a hierarchical system where haematopoietic stem cells (HSCs) give rise to multipotent progenitors, which in turn differentiate into all types of mature blood cells. HSCs maintain themselves for the lifetime of the organism because of their ability to self-renew. However, multipotent progenitors lack the ability to self-renew, therefore their mitotic capacity and expansion potential are limited and they are destined to eventually stop proliferating after a finite number of cell divisions. The molecular mechanisms that limit the proliferation capacity of multipotent progenitors and other more mature progenitors are not fully understood. Here we show that bone marrow cells from mice deficient in three genes genetically downstream of Bmi1--p16Ink4a, p19Arf and Trp53 (triple mutant mice; p16Ink4a and p19Arf are alternative reading frames of the same gene (also called Cdkn2a) that encode different proteins)--have an approximately 10-fold increase in cells able to reconstitute the blood long term. This increase is associated with the acquisition of long-term reconstitution capacity by cells of the phenotype c-kit+Sca-1+Flt3+CD150-CD48-Lin-, which defines multipotent progenitors in wild-type mice. The pattern of triple mutant multipotent progenitor response to growth factors resembles that of wild-type multipotent progenitors but not wild-type HSCs. These results demonstrate that p16Ink4a/p19Arf and Trp53 have a central role in limiting the expansion potential of multipotent progenitors. These pathways are commonly repressed in cancer, suggesting a mechanism by which early progenitor cells could gain the ability to self-renew and become malignant with further oncogenic mutations.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Genes p16 , Genes p53/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Proteína Supressora de Tumor p53/deficiência , Animais , Contagem de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/imunologia , Células-Tronco Multipotentes/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Gastroenterology ; 142(5): 1195-1205.e6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22333952

RESUMO

BACKGROUND & AIMS: Paneth cells contribute to the small intestinal niche of Lgr5(+) stem cells. Although the colon also contains Lgr5(+) stem cells, it does not contain Paneth cells. We investigated the existence of colonic Paneth-like cells that have a distinct transcriptional signature and support Lgr5(+) stem cells. METHODS: We used multicolor fluorescence-activated cell sorting to isolate different subregions of colon crypts, based on known markers, from dissociated colonic epithelium of mice. We performed multiplexed single-cell gene expression analysis with quantitative reverse transcriptase polymerase chain reaction followed by hierarchical clustering analysis to characterize distinct cell types. We used immunostaining and fluorescence-activated cell sorting analyses with in vivo administration of a Notch inhibitor and in vitro organoid cultures to characterize different cell types. RESULTS: Multicolor fluorescence-activated cell sorting could isolate distinct regions of colonic crypts. Four major epithelial subtypes or transcriptional states were revealed by gene expression analysis of selected populations of single cells. One of these, the goblet cells, contained a distinct cKit/CD117(+) crypt base subpopulation that expressed Dll1, Dll4, and epidermal growth factor, similar to Paneth cells, which were also marked by cKit. In the colon, cKit(+) goblet cells were interdigitated with Lgr5(+) stem cells. In vivo, this colonic cKit(+) population was regulated by Notch signaling; administration of a γ-secretase inhibitor to mice increased the number of cKit(+) cells. When isolated from mouse colon, cKit(+) cells promoted formation of organoids from Lgr5(+) stem cells, which expressed Kitl/stem cell factor, the ligand for cKit. When organoids were depleted of cKit(+) cells using a toxin-conjugated antibody, organoid formation decreased. CONCLUSIONS: cKit marks small intestinal Paneth cells and a subset of colonic goblet cells that are regulated by Notch signaling and support Lgr5(+) stem cells.


Assuntos
Colo/citologia , Celulas de Paneth/química , Celulas de Paneth/fisiologia , Proteínas Proto-Oncogênicas c-kit/análise , Receptores Acoplados a Proteínas G/análise , Células-Tronco/fisiologia , Animais , Antígenos CD/análise , Moléculas de Adesão Celular/análise , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Células Caliciformes/fisiologia , Receptores de Hialuronatos/análise , Camundongos , Camundongos Endogâmicos C57BL , Receptores Notch/fisiologia , Análise de Célula Única , Células-Tronco/química
8.
Proc Natl Acad Sci U S A ; 107(42): 18115-20, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921380

RESUMO

To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44(+) cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy.


Assuntos
Neoplasias da Mama/patologia , Metástase Neoplásica , Células-Tronco Neoplásicas/citologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias
9.
Mol Oncol ; 16(17): 3128-3145, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35398967

RESUMO

As precision medicine increases the response rate of treatment, tumors frequently bypass inhibition, and reoccur. In order for treatment to be effective long term, the mechanisms enabling treatment adaptation need to be understood. Here, we report a mouse model that, in the absence of p53 and the presence of oncogenic KrasG12D , develops breast tumors. Upon inactivation of KrasG12D , tumors initially regress and enter remission. Subsequently, the majority of tumors adapt to the withdrawal of KrasG12D expression and return. KrasG12D -independent tumor cells show a strong mesenchymal profile with active RAS-RAF-MEK-ERK (MAPK/ERK) signaling. Both KrasG12D -dependent and KrasG12D -independent tumors display a high level of genomic instability, and KrasG12D -independent tumors harbor numerous amplified genes that can activate the MAPK/ERK signaling pathway. Our study identifies both epithelial-mesenchymal transition (EMT) and active MAPK/ERK signaling in tumors that adapt to oncogenic KrasG12D withdrawal in a novel Trp53-/- breast cancer mouse model. To achieve long-lasting responses in the clinic to RAS-fueled cancer, treatment will need to focus in parallel on obstructing tumors from adapting to oncogene inhibition.


Assuntos
Transição Epitelial-Mesenquimal , Genes ras , Animais , Carcinogênese/genética , Transição Epitelial-Mesenquimal/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
10.
J Gastroenterol ; 57(6): 407-422, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244768

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are key regulators of stem cell functions, including self-renewal and differentiation. In this study, we aimed to identify miRNAs that are upregulated during terminal differentiation in the human colon epithelium, and elucidate their role in the mechanistic control of stem cell properties. METHODS: "Bottom-of-the-crypt" (EPCAM+/CD44+/CD66alow) and "top-of-the-crypt" (EPCAM+/CD44neg/CD66ahigh) epithelial cells from 8 primary colon specimens (6 human, 2 murine) were purified by flow cytometry and analyzed for differential expression of 335 miRNAs. The miRNAs displaying the highest upregulation in "top-of-the-crypt" (terminally differentiated) epithelial cells were tested for positive correlation and association with survival outcomes in a colon cancer RNA-seq database (n = 439 patients). The two miRNAs with the strongest "top-of-the-crypt" expression profile were evaluated for capacity to downregulate self-renewal effectors and inhibit in vitro proliferation of colon cancer cells, in vitro organoid formation by normal colon epithelial cells and in vivo tumorigenicity by patient-derived xenografts (PDX). RESULTS: Six miRNAs (miR-200a, miR-200b, miR-200c, miR-203, miR-210, miR-345) were upregulated in "top-of-the-crypt" cells and positively correlated in expression among colon carcinomas. Overexpression of the three miRNAs with the highest inter-correlation coefficients (miR-200a, miR-200b, miR-200c) associated with improved survival. The top two over-expressed miRNAs (miR-200c, miR-203) cooperated synergistically in suppressing expression of BMI1, a key regulator of self-renewal in stem cell populations, and in inhibiting proliferation, organoid-formation and tumorigenicity of colon epithelial cells. CONCLUSION: In the colon epithelium, terminal differentiation associates with the coordinated upregulation of miR-200c and miR-203, which cooperate to suppress BMI1 and disable the expansion capacity of epithelial cells.


Assuntos
Neoplasias do Colo , MicroRNAs , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas , Regulação para Cima
11.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311644

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Senescência Celular , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Transgênicos , Placa Amiloide , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
12.
Sci Adv ; 8(45): eabm3548, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351009

RESUMO

Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
13.
Stem Cell Reports ; 16(2): 228-236, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482103

RESUMO

The mammary epithelium undergoes several rounds of extensive proliferation during the female reproductive cycle. Its expansion is a tightly regulated process, fueled by the mammary stem cells and these cells' unique property of self-renewal. Sufficient new cells have to be produced to maintain the integrity of a tissue, but excessive proliferation resulting in tumorigenesis needs to be prevented. Three well-known tumor suppressors, p53, p16INK4a, and p19ARF, have been connected to the limiting of stem cell self-renewal and proliferation. Here we investigate the roles of these three proteins in the regulation of self-renewal and proliferation of mammary epithelial cells. Using mammary epithelial-specific mouse models targeting Trp53 and Cdkn2a, the gene coding for p16INK4a and p19ARF, we demonstrate that p53, p16INK4a, and p19ARF do not play a significant role in the limitation of normal mammary epithelium self-renewal and proliferation, whereas in the presence of the inflammatory cytokine TNF-α, Trp53-/-Cdkn2a-/- mammary basal cells exhibit amplified proliferation.


Assuntos
Proliferação de Células , Autorrenovação Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinogênese/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Organoides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Cell Stem Cell ; 27(2): 284-299.e8, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32693087

RESUMO

SMAD pathways govern epithelial proliferation, and transforming growth factor ß (TGF-ß and BMP signaling through SMAD members has distinct effects on mammary development and homeostasis. Here, we show that LEFTY1, a secreted inhibitor of NODAL/SMAD2 signaling, is produced by mammary progenitor cells and, concomitantly, suppresses SMAD2 and SMAD5 signaling to promote long-term proliferation of normal and malignant mammary epithelial cells. In contrast, BMP7, a NODAL antagonist with context-dependent functions, is produced by basal cells and restrains progenitor cell proliferation. In normal mouse epithelium, LEFTY1 expression in a subset of luminal cells and rare basal cells opposes BMP7 to promote ductal branching. LEFTY1 binds BMPR2 to suppress BMP7-induced activation of SMAD5, and this LEFTY1-BMPR2 interaction is specific to tumor-initiating cells in triple-negative breast cancer xenografts that rely on LEFTY1 for growth. These results suggest that LEFTY1 is an endogenous dual-SMAD inhibitor and that suppressing its function may represent a therapeutic vulnerability in breast cancer.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Carcinogênese , Transformação Celular Neoplásica , Camundongos
15.
Science ; 367(6476): 405-411, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974247

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.


Assuntos
Diferenciação Celular/genética , Neoplasias/genética , RNA Citoplasmático Pequeno/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Transcrição Gênica , Animais , Sequência de Bases , Variação Genética , Humanos , Camundongos
16.
Nat Commun ; 8(1): 1669, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162812

RESUMO

Previous studies have proposed that epithelial to mesenchymal transition (EMT) in breast cancer cells regulates metastasis, stem cell properties and chemo-resistance; most studies were based on in vitro culture of cell lines and mouse transgenic cancer models. However, the identity and function of cells expressing EMT-associated genes in normal murine mammary gland homeostasis and human breast cancer still remains under debate. Using in vivo lineage tracing and triple negative breast cancer (TNBC) patient derived xenografts we demonstrate that the repopulating capacity in normal mammary epithelial cells and tumorigenic capacity in TNBC is independent of expression of EMT-associated genes. In breast cancer, while a subset of cells with epithelial and mesenchymal phenotypes have stem cell activity, in many cells that have lost epithelial characteristics with increased expression of mesenchymal genes, have decreased tumor-initiating capacity and plasticity. These findings have implications for the development of effective therapeutic agents targeting tumor-initiating cells.


Assuntos
Mama/metabolismo , Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Neoplasias de Mama Triplo Negativas/genética , Animais , Mama/citologia , Mama/fisiologia , Células Epiteliais/metabolismo , Feminino , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Regeneração/genética , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/patologia
17.
Cell Stem Cell ; 20(2): 247-260.e5, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28041896

RESUMO

Stem cells in many tissues sustain themselves by entering a quiescent state to avoid genomic insults and to prevent exhaustion caused by excessive proliferation. In the mammary gland, the identity and characteristics of quiescent epithelial stem cells are not clear. Here, we identify a quiescent mammary epithelial cell population expressing high levels of Bcl11b and located at the interface between luminal and basal cells. Bcl11bhigh cells are enriched for cells that can regenerate mammary glands in secondary transplants. Loss of Bcl11b leads to a Cdkn2a-dependent exhaustion of ductal epithelium and loss of epithelial cell regenerative capacity. Gain- and loss-of-function studies show that Bcl11b induces cells to enter the G0 phase of the cell cycle and become quiescent. Taken together, these results suggest that Bcl11b acts as a central intrinsic regulator of mammary epithelial stem cell quiescence and exhaustion and is necessary for long-term maintenance of the mammary gland.


Assuntos
Ciclo Celular , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos CD/metabolismo , Linhagem da Célula , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/metabolismo , Feminino , Deleção de Genes , Homeostase , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração/fisiologia
18.
Hum Gene Ther ; 13(14): 1737-50, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12396626

RESUMO

Oncolytic adenoviruses with restricted replication can be produced if the expression of crucial transcription units of the virus is controlled by tissue- or tumor-specific promoters. Here we describe a method for the rapid incorporation of exogenous promoters into the E1A and E4 regions of the human adenovirus type 5 genome. Using this system, we have generated AdEHT2 and AdEHE2F, two conditionally replicative adenoviruses for the treatment of breast cancer. The expression of the E1A gene in both viruses is controlled by a minimal dual-specificity promoter that responds to estrogens and hypoxia. The tight regulation of E1A expression correlated with the ability of these viruses to replicate and kill human cancer cells that express estrogen receptors, or are maintained under hypoxic conditions. The telomerase reverse transcriptase (TERT) promoter and the E2F-1 promoter are preferentially activated in cancer cells. They were introduced into the E4 region of AdEHT2 and AdEHE2F, respectively. The telomerase core promoter failed to block the replication of the virus in telomerase-negative cells. In contrast, AdEHE2F was attenuated in nontransformed quiescent cells growing under normoxic conditions, suggesting that an intact pRB pathway with low levels of E2F transcription factors acts as a negative modulator for the virus. These data indicate that the simultaneous regulation of E1A and E4 viral transcription units by the appropriate combination of promoters can increase the tumor selectivity of oncolytic adenoviruses.


Assuntos
Adenocarcinoma/terapia , Proteínas E1A de Adenovirus/genética , Proteínas E4 de Adenovirus/genética , Adenovírus Humanos/fisiologia , Neoplasias da Mama/terapia , Efeito Citopatogênico Viral/efeitos dos fármacos , Estrogênios/fisiologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Sintéticos , Terapia Genética , Vetores Genéticos/fisiologia , Neoplasias Hormônio-Dependentes/terapia , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Estrogênio/genética , Tamoxifeno/análogos & derivados , Telomerase/genética , Replicação Viral/efeitos dos fármacos , Adenocarcinoma/patologia , Proteínas E1A de Adenovirus/fisiologia , Proteínas E4 de Adenovirus/fisiologia , Adenovírus Humanos/genética , Animais , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Proteínas de Ligação a DNA , Estradiol/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Vetores Genéticos/efeitos dos fármacos , Vetores Genéticos/genética , Vetores Genéticos/toxicidade , Células HeLa/efeitos dos fármacos , Células HeLa/virologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes/patologia , Receptores de Estrogênio/efeitos dos fármacos , Tamoxifeno/farmacologia , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Elife ; 32014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406066

RESUMO

MicroRNAs (miRNAs) are important regulators of stem and progenitor cell functions. We previously reported that miR-142 and miR-150 are upregulated in human breast cancer stem cells (BCSCs) as compared to the non-tumorigenic breast cancer cells. In this study, we report that miR-142 efficiently recruits the APC mRNA to an RNA-induced silencing complex, activates the canonical WNT signaling pathway in an APC-suppression dependent manner, and activates the expression of miR-150. Enforced expression of miR-142 or miR-150 in normal mouse mammary stem cells resulted in the regeneration of hyperproliferative mammary glands in vivo. Knockdown of endogenous miR-142 effectively suppressed organoid formation by BCSCs and slowed tumor growth initiated by human BCSCs in vivo. These results suggest that in some tumors, miR-142 regulates the properties of BCSCs at least in part by activating the WNT signaling pathway and miR-150 expression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Carcinogênese/genética , Proliferação de Células , Células Clonais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Organoides/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Via de Sinalização Wnt/genética
20.
Nat Cell Biol ; 16(12): 1238-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362351

RESUMO

It has been postulated that there is a link between inflammation and cancer. Here we describe a role for cell-intrinsic toll-like receptor-2 (TLR2; which is involved in inflammatory response) signalling in normal intestinal and mammary epithelial cells and oncogenesis. The downstream effectors of TLR2 are expressed by normal intestinal and mammary epithelia, including the stem/progenitor cells. Deletion of MYD88 or TLR2 in the intestinal epithelium markedly reduces DSS-induced colitis regeneration and spontaneous tumour development in mice. Limiting dilution transplantations of breast epithelial cells devoid of TLR2 or MYD88 revealed a significant decrease in mammary repopulating unit frequency compared with the control. Inhibition of TLR2, its co-receptor CD14, or its downstream targets MYD88 and IRAK1 inhibits growth of human breast cancers in vitro and in vivo. These results suggest that inhibitors of the TLR2 pathway merit investigation as possible therapeutic and chemoprevention agents.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Carcinogênese/metabolismo , Neoplasias do Colo/patologia , Mucosa Intestinal/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Carcinogênese/genética , Moléculas de Adesão Celular/metabolismo , Colite/induzido quimicamente , Colite/patologia , Neoplasias do Colo/genética , Sulfato de Dextrana , Molécula de Adesão da Célula Epitelial , Epitélio/patologia , Feminino , Células HEK293 , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/genética , Mucosa Intestinal/metabolismo , Antígenos Comuns de Leucócito/genética , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/genética , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/genética , Transdução de Sinais , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA