Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; : e2400025, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895962

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.

2.
Clin Chem ; 70(6): 855-864, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38549041

RESUMO

BACKGROUND: The enhanced precision and selectivity of liquid chromatography-tandem mass spectrometry (LC-MS/MS) makes it an attractive alternative to certain clinical immunoassays. Easily transferrable work flows could help facilitate harmonization and ensure high-quality patient care. We aimed to evaluate the interlaboratory comparability of antibody-free multiplexed insulin and C-peptide LC-MS/MS measurements. METHODS: The laboratories that comprise the Targeted Mass Spectrometry Assays for Diabetes and Obesity Research (TaMADOR) consortium verified the performance of a validated peptide-based assay (reproducibility, linearity, and lower limit of the measuring interval [LLMI]). An interlaboratory comparison study was then performed using shared calibrators, de-identified leftover laboratory samples, and reference materials. RESULTS: During verification, the measurements were precise (2.7% to 3.7%CV), linear (4 to 15 ng/mL for C-peptide and 2 to 14 ng/mL for insulin), and sensitive (LLMI of 0.04 to 0.10 ng/mL for C-peptide and 0.03 ng/mL for insulin). Median imprecision across the 3 laboratories was 13.4% (inter-quartile range [IQR] 11.6%) for C-peptide and 22.2% (IQR 20.9%) for insulin using individual measurements, and 10.8% (IQR 8.7%) and 15.3% (IQR 14.9%) for C-peptide and insulin, respectively, when replicate measurements were averaged. Method comparison with the University of Missouri reference method for C-peptide demonstrated a robust linear correlation with a slope of 1.044 and r2 = 0.99. CONCLUSIONS: Our results suggest that combined LC-MS/MS measurements of C-peptide and insulin are robust and adaptable and that standardization with a reference measurement procedure could allow accurate and precise measurements across sites, which could be important to diabetes research and help patient care in the future.


Assuntos
Peptídeo C , Insulina , Espectrometria de Massas em Tandem , Peptídeo C/sangue , Peptídeo C/análise , Humanos , Espectrometria de Massas em Tandem/métodos , Insulina/análise , Insulina/sangue , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Laboratórios/normas , Espectrometria de Massa com Cromatografia Líquida
3.
Mass Spectrom Rev ; 42(2): 796-821, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719806

RESUMO

Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.


Assuntos
Proteínas , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/química , Mutação
4.
FASEB J ; 37(10): e23185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695721

RESUMO

Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic ß cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of ß-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.


Assuntos
Insulina , Transcriptoma , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Secreção de Insulina , Caracteres Sexuais , Secretoma , Células Receptoras Sensoriais
5.
Mol Cell Proteomics ; 21(12): 100426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244662

RESUMO

Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.


Assuntos
Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Proteômica/métodos , Proteínas/metabolismo , Microdissecção e Captura a Laser
6.
Proteomics ; 23(13-14): e2200194, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248656

RESUMO

Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.


Assuntos
Proteômica , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Oxirredução , Proteoma/metabolismo
7.
J Proteome Res ; 22(3): 942-950, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626706

RESUMO

Prostate cancer (PCa) is the second leading cause of male cancer-related deaths in the United States. The pre-mature forms of prostate-specific antigen (PSA), proPSA, were shown to be associated with PCa. However, there is a technical challenge in the development of antibody-based immunoassays for specific recognition of each individual proPSA isoform. Herein, we report the development of highly specific, antibody-free, targeted mass spectrometry assays for simultaneous quantification of [-2], [-4], [-5], and [-7] proPSA isoforms in voided urine. The newly developed proPSA assays capitalize on Lys-C digestion to generate surrogate peptides with appropriate length (9-16 amino acids) along with long-gradient liquid chromatography separation. The assay utility of these isoform markers was evaluated in a cohort of 30 well-established clinical urine samples for distinguishing PCa patients from healthy controls. Under the 95% confidence interval, the combination of [-2] and [-4] proPSA isoforms yields the area under curve (AUC) of 0.86, and the AUC value for the combined all four isoforms was calculated to be 0.85. We have further verified [-2]proPSA, the dominant isoform, in an independent cohort of 34 clinical urine samples. Validation of proPSA isoforms in large-scale cohorts is needed to demonstrate their potential clinical utility.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Imunoensaio , Isoformas de Proteínas , Espectrometria de Massas
8.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L571-L583, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881561

RESUMO

E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.


Assuntos
Produtos Biológicos , Sistemas Eletrônicos de Liberação de Nicotina , Ratos , Animais , Nicotina , Proteoma , Higroscópicos , Ratos Sprague-Dawley , Propilenoglicol/farmacologia , Glicerol/farmacologia , Aerossóis , Histonas , Aromatizantes , Lavagem Broncoalveolar
9.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770810

RESUMO

Post-translational modifications (PTMs) are key regulatory mechanisms that can control protein function. Of these, phosphorylation is the most common and widely studied. Because of its importance in regulating cell signaling, precise and accurate measurements of protein phosphorylation across wide dynamic ranges are crucial to understanding how signaling pathways function. Although immunological assays are commonly used to detect phosphoproteins, their lack of sensitivity, specificity, and selectivity often make them unreliable for quantitative measurements of complex biological samples. Recent advances in Mass Spectrometry (MS)-based targeted proteomics have made it a more useful approach than immunoassays for studying the dynamics of protein phosphorylation. Selected reaction monitoring (SRM)-also known as multiple reaction monitoring (MRM)-and parallel reaction monitoring (PRM) can quantify relative and absolute abundances of protein phosphorylation in multiplexed fashions targeting specific pathways. In addition, the refinement of these tools by enrichment and fractionation strategies has improved measurement of phosphorylation of low-abundance proteins. The quantitative data generated are particularly useful for building and parameterizing mathematical models of complex phospho-signaling pathways. Potentially, these models can provide a framework for linking analytical measurements of clinical samples to better diagnosis and treatment of disease.


Assuntos
Fosfoproteínas , Transdução de Sinais , Fosforilação , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
10.
J Biol Chem ; 296: 100495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667549

RESUMO

Human embryonic stem cells are a type of pluripotent stem cells (hPSCs) that are used to investigate their differentiation into diverse mature cell types for molecular studies. The mechanisms underlying insulin receptor (IR)-mediated signaling in the maintenance of human pluripotent stem cell (hPSC) identity and cell fate specification are not fully understood. Here, we used two independent shRNAs to stably knock down IRs in two hPSC lines that represent pluripotent stem cells and explored the consequences on expression of key proteins in pathways linked to proliferation and differentiation. We consistently observed lowered pAKT in contrast to increased pERK1/2 and a concordant elevation in pluripotency gene expression. ERK2 chromatin immunoprecipitation, luciferase assays, and ERK1/2 inhibitors established direct causality between ERK1/2 and OCT4 expression. Of importance, RNA sequencing analyses indicated a dysregulation of genes involved in cell differentiation and organismal development. Mass spectrometry-based proteomic analyses further confirmed a global downregulation of extracellular matrix proteins. Subsequent differentiation toward the neural lineage reflected alterations in SOX1+PAX6+ neuroectoderm and FOXG1+ cortical neuron marker expression and protein localization. Collectively, our data underscore the role of IR-mediated signaling in maintaining pluripotency, the extracellular matrix necessary for the stem cell niche, and regulating cell fate specification including the neural lineage.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Receptor de Insulina/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos , Transdução de Sinais
11.
Am J Physiol Cell Physiol ; 320(2): C182-C194, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264075

RESUMO

The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein, we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives toward a better understanding of cellular redox regulatory networks in cells and tissues.


Assuntos
Sobrevivência Celular/fisiologia , Estresse Oxidativo/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas/métodos , Oxirredução
12.
J Proteome Res ; 20(5): 2266-2282, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33900085

RESUMO

Proteinaceous aggregates containing α-synuclein protein called Lewy bodies in the substantia nigra is a hallmark of Parkinson's disease. The molecular mechanisms of Lewy body formation and associated neuronal loss remain largely unknown. To gain insights into proteins and pathways associated with Lewy body pathology, we performed quantitative profiling of the proteome. We analyzed substantia nigra tissue from 51 subjects arranged into three groups: cases with Lewy body pathology, Lewy body-negative controls with matching neuronal loss, and controls with no neuronal loss. Using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we characterized the proteome both in terms of protein abundances and peptide modifications. Statistical testing for differential abundance of the most abundant 2963 proteins, followed by pathway enrichment and Bayesian learning of the causal network structure, was performed to identify likely drivers of Lewy body formation and dopaminergic neuronal loss. The identified pathways include (1) Arp2/3 complex-mediated actin nucleation; (2) synaptic function; (3) poly(A) RNA binding; (4) basement membrane and endothelium; and (5) hydrogen peroxide metabolic process. According to the data, the endothelial/basement membrane pathway is tightly connected with both pathologies and likely to be one of the drivers of neuronal loss. The poly(A) RNA-binding proteins, including the ones relevant to other neurodegenerative disorders (e.g., TDP-43 and FUS), have a strong inverse correlation with Lewy bodies and may reflect an alternative mechanism of nigral neurodegeneration.


Assuntos
Corpos de Lewy , Proteômica , Teorema de Bayes , Cromatografia Líquida , Humanos , Neurônios/metabolismo , Substância Negra/metabolismo , Espectrometria de Massas em Tandem , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
J Proteome Res ; 20(5): 2780-2795, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856812

RESUMO

Proteomic investigations of Alzheimer's and Parkinson's disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein's "intact" state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer's disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at -50, -40, and -30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aß) proteoforms, including the aggregation-prone Aß1-42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Peptídeos beta-Amiloides , Encéfalo , Química Encefálica , Proteoma
14.
J Proteome Res ; 20(9): 4452-4461, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34351778

RESUMO

Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 µL to sub-µL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (surfactant-assisted one-pot sample processing at the standard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low µL volume, we have systematically evaluated its processing volume at 10-200 µL using 100 human cells. The processing volume of 50 µL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.


Assuntos
Proteoma , Proteômica , Animais , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas , Camundongos
15.
J Am Chem Soc ; 143(33): 13325-13332, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383487

RESUMO

H2S and H2O2 are two redox regulating molecules that play important roles in many physiological and pathological processes. While each of them has distinct biosynthetic pathways and signaling mechanisms, the crosstalk between these two species is also known to cause critical biological responses such as protein S-persulfidation. So far, many chemical tools for the studies of H2S and H2O2 have been developed, such as the donors and sensors for H2S and H2O2. However, these tools are normally targeting single species (e.g., only H2S or only H2O2). As such, the crosstalk and synergetic effects between H2S and H2O2 have hardly been studied with those tools. In this work, we report a unique H2S/H2O2 dual donor system by employing 1-thio-ß-d-glucose and glucose oxidase (GOx) as the substrates. This enzymatic system can simultaneously produce H2S and H2O2 in a slow and controllable fashion, without generating any bio-unfriendly byproducts. This system was demonstrated to cause efficient S-persulfidation on proteins. In addition, we expanded the system to thiolactose and thioglucose-disulfide; therefore, additional factors (ß-galactosidase and cellular reductants) could be introduced to further control the release of H2S/H2O2. This dual release system should be useful for future research on H2S and H2O2.


Assuntos
Glucose Oxidase/metabolismo , Glucose/análogos & derivados , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteína S/metabolismo , Glucose/química , Glucose/metabolismo , Glucose Oxidase/química , Humanos , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/química , Proteína S/química
16.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L29-L41, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949206

RESUMO

Prolonged oxygen therapy leads to oxidative stress, epithelial dysfunction, and acute lung injury in preterm infants and adults. Heterozygous Scnn1b mice, which overexpress lung epithelial sodium channels (ENaC), and their wild-type (WT) C57Bl6 littermates were utilized to study the pathogenesis of high fraction inspired oxygen ([Formula: see text])-induced lung injury. Exposure to high [Formula: see text] from birth to postnatal (PN) day 11 was used to model oxidative stress. Chronic exposure of newborn pups to 85% O2 increased glutathione disulfide (GSSG) and elevated the GSH/GSSG redox potential (Eh) of bronchoalveolar lavage fluid (BALF). Longitudinal X-ray imaging and Evans blue-labeled-albumin assays showed that chronic 85% O2 and acute GSSG (400 µM) exposures decreased alveolar fluid clearance (AFC) in the WT lung. Morphometric analysis of WT pups insufflated with GSSG (400 µM) or amiloride (1 µM) showed a reduction in alveologenesis and increased lung injury compared with age-matched control pups. The Scnn1b mouse lung phenotype was not further aggravated by chronic 85% O2 exposure. These outcomes support the hypothesis that exposure to hyperoxia increases GSSG, resulting in reduced lung fluid reabsorption due to inhibition of amiloride-sensitive ENaC. Flavin adenine dinucleotide (FADH2; 10 µM) was effective in recycling GSSG in vivo and promoted alveologenesis, but did not impact AFC nor attenuate fibrosis following high [Formula: see text] exposure. In conclusion, the data indicate that FADH2 may be pivotal for normal lung development, and show that ENaC is a key factor in promoting alveologenesis, sustaining AFC, and attenuating fibrotic lung injury caused by prolonged oxygen therapy in WT mice.


Assuntos
Lesão Pulmonar Aguda , Canais Epiteliais de Sódio , Oxigênio , Animais , Feminino , Masculino , Camundongos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Amilorida/toxicidade , Bloqueadores do Canal de Sódio Epitelial/toxicidade , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Dissulfeto de Glutationa/toxicidade , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade
17.
Arch Toxicol ; 95(7): 2469-2483, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031698

RESUMO

Bronchiolitis obliterans (BO) is a devastating lung disease seen commonly after lung transplant, following severe respiratory tract infection or chemical inhalation exposure. Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha-diketone known to cause BO when inhaled, however, the mechanisms of how inhalation exposure leads to BO development remains poorly understood. In the current work, we combined two clinically relevant models for studying the pathogenesis of DA-induced BO: (1) an in vivo rat model of repetitive DA vapor exposures with recovery and (2) an in vitro model of primary human airway epithelial cells exposed to pure DA vapors. Rats exposed to 5 consecutive days 200 parts-per-million DA 6 h per day had worsening survival, persistent hypoxemia, poor weight gain, and histologic evidence of BO 14 days after DA exposure cessation. At the end of exposure, increased expression of the ubiquitin stress protein ubiquitin-C accumulated within DA-exposed rat lung homogenates and localized primarily to the airway epithelium, the primary site of BO development. Lung proteasome activity increased concurrently with ubiquitin-C expression after DA exposure, supportive of significant proteasome stress. In primary human airway cultures, global proteomics identified 519 significantly modified proteins in DA-exposed samples relative to controls with common pathways of the ubiquitin proteasome system, endosomal reticulum transport, and response to unfolded protein pathways being upregulated and cell-cell adhesion and oxidation-reduction pathways being downregulated. Collectively, these two models suggest that diacetyl inhalation exposure causes abundant protein damage and subsequent ubiquitin proteasome stress prior to the development of chemical-induced BO pathology.


Assuntos
Bronquiolite Obliterante , Diacetil , Animais , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Diacetil/metabolismo , Diacetil/toxicidade , Aromatizantes/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Mucosa Respiratória/metabolismo , Ubiquitina/metabolismo
18.
J Proteome Res ; 19(7): 2863-2872, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407631

RESUMO

Label-free quantitative proteomics has become an increasingly popular tool for profiling global protein abundances. However, one major limitation is the potential performance drift of the LC-MS platform over time, which, in turn, limits its utility for analyzing large-scale sample sets. To address this, we introduce an experimental and data analysis scheme based on a block design with common references within each block for enabling large-scale label-free quantification. In this scheme, a large number of samples (e.g., >100 samples) are analyzed in smaller and more manageable blocks, minimizing instrument drift and variability within individual blocks. Each designated block also contains common reference samples (e.g., controls) for normalization across all blocks. We demonstrated the robustness of this approach by profiling the proteome response of human macrophage THP-1 cells to 11 engineered nanomaterials at two different doses. A total of 116 samples were analyzed in six blocks, yielding an average coverage of 4500 proteins per sample. Following a common reference-based correction, 2537 proteins were quantified with high reproducibility without any imputation of missing values from 116 data sets. The data revealed the consistent quantification of proteins across all six blocks, as illustrated by the highly consistent abundances of house-keeping proteins in all samples and the high levels of correlation among samples from different blocks. The data also demonstrated that label-free quantification is robust and accurate enough to quantify even very subtle abundance changes as well as large fold-changes. Our streamlined workflow is easy to implement and can be readily adapted to other large cohort studies for reproducible label-free proteome quantification.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes , Células THP-1
19.
J Proteome Res ; 19(4): 1863-1872, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32175737

RESUMO

Proteins with deamidated/citrullinated amino acids play critical roles in the pathogenesis of many human diseases; however, identifying these modifications in complex biological samples has been an ongoing challenge. Herein we present a method to accurately identify these modifications from shotgun proteomics data generated by a deep proteome profiling study of human pancreatic islets obtained by laser capture microdissection. All MS/MS spectra were searched twice using MSGF+ database matching, with and without a dynamic +0.9840 Da mass shift modification on amino acids asparagine, glutamine, and arginine (NQR). Consequently, each spectrum generates two peptide-to-spectrum matches (PSMs) with MSGF+ scores, which were used for the Delta Score calculation. It was observed that all PSMs with positive Delta Score values were clustered with mass errors around 0 ppm, while PSMs with negative Delta Score values were distributed nearly equally within the defined mass error range (20 ppm) for database searching. To estimate false discovery rate (FDR) of modified peptides, a "target-mock" strategy was applied in which data sets were searched against a concatenated database containing "real-modified" (+0.9840 Da) and "mock-modified" (+1.0227 Da) peptide masses. The FDR was controlled to ∼2% using a Delta Score filter value greater than zero. Manual inspection of spectra showed that PSMs with positive Delta Score values contained deamidated/citrullinated fragments in their MS/MS spectra. Many citrullinated sites identified in this study were biochemically confirmed as autoimmunogenic epitopes of autoimmune diseases in literature. The results demonstrated that in situ deamidated/citrullinated peptides can be accurately identified from shotgun tissue proteomics data using this dual-search Delta Score strategy. Raw MS data is available at ProteomeXchange (PXD010150).


Assuntos
Citrulinação , Proteômica , Algoritmos , Bases de Dados de Proteínas , Humanos , Peptídeos/metabolismo , Proteínas , Espectrometria de Massas em Tandem
20.
Anal Chem ; 92(7): 4926-4934, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196314

RESUMO

Protein expression levels are regulated through both translation and degradation mechanisms. Levels of degradation intermediates, that is, partially degraded proteins, cannot be distinguished from those of intact proteins by global proteomics analysis, which quantify total protein abundance levels. This study aimed to develop a tool for assessing the aspects of degradation regulation via proteolytic processing through a new multiplexed N-terminomics method involving selective isobaric labeling of protein N-termini and immunoaffinity capture of the labeled N-terminal peptides. Our method allows for not only identification of proteolytic cleavage sites, but also highly multiplexed quantification of proteolytic processing. We profiled a number of potential cleavage sites by signal peptidase and provided experimental confirmation of predicted cleavage sites of signal peptide. Furthermore, the present method uniquely represents the landscape of proteomic proteolytic processing rate during early embryogenesis in Drosophila melanogaster, revealing the underlying mechanism of stringent decay regulation of zygotically expressed proteins during early stages of embryogenesis.


Assuntos
Proteínas de Drosophila/análise , Peptídeos/análise , Animais , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Proteólise , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA