RESUMO
Security inks based on photoluminescent materials are mostly investigated for security applications, such as information encryption and decryption, anti-counterfeiting, and data storage. Although they are invisible to the naked eye under ambient light, they can be detected under ultraviolet or near-infrared light. Herein, a new kind of secret paper made from network-structured ultralong hydroxyapatite nanowires and cellulose fibers has been developed. White vinegar, a common cooking ingredient, is used as an invisible security ink. Covert information on the secret paper written with white vinegar is totally invisible under natural light, but it can be decrypted and clearly read after exposure to fire; the response time to fire is short (<10â s). The ways of writing on the secret paper are diverse by using various pens loaded with white vinegar.
RESUMO
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.
RESUMO
Graphitic carbon nitride (g-C3N4) has been widely studied as a metal-free photocatalyst, leading to some excellent results; however, the rapid recombination of photogenerated charge carriers substantially limits its performance. Here, we establish two types of g-C3N4-based heterojunction (type II and nonmediator assisted Z-scheme) photoanodes on a transparent conducting substrate via coupling with rod-like and nanoparticulate WO3, respectively. In these composites, g-C3N4 film grown by electrophoretic deposition of exfoliated g-C3N4 serves as the host or guest material. The optimized type II WO3/g-C3N4 composite exhibits an enhanced photocurrent of 0.82 mA cm-2 at 1.23 V vs. RHE and an incident photo-to-current conversion efficiency (IPCE) of 33% as compared with pure WO3 nanorods (0.22 mA cm-2 for photocurrent and 15% for IPCE). Relative to pure g-C3N4 film (with a photocurrent of several microampere and an IPCE of 2%), a largely improved photocurrent of 0.22 mA cm-2 and an IPCE of 20% were acquired for the Z-scheme g-C3N4/WO3 composite. The enhancement can be attributed to accelerated charge separation in the heterointerface because of the suitably aligned band gap between WO3 and g-C3N4, as confirmed by optical spectroscopy and ultraviolet photoelectron spectroscopy (UPS) analysis. The photocatalytic process and mechanism of the g-C3N4-based heterojunctions are proposed herein, which potentially explain the origin of the enhanced photoelectrochemical performance. This achievement and the fundamental information supplied here indicate the importance of rationally designing heterojunction photoelectrodes to improve the performance of semiconductors. This is particularly important for materials such as pure g-C3N4 and WO3, as their photoactivities are strongly restricted by high recombination rates.
RESUMO
High fecundity is a common characteristic of insect pests which increases the difficulty of population control. Serine/threonine kinase Akt is an indispensable component of the insulin signaling pathway. Silencing of LsAkt severely hinders reproduction in Lasioderma serricorne, a stored product insect pest. However, the post-transcriptional pathway of LsAkt in L. serricorne remains unknown. This study identified 2 binding sites of miR-9c-5p and novel-mir50 in the coding sequences of LsAkt. The expression profiles of 2 microRNAs (miRNAs) and LsAkt displayed an opposite pattern during the adult stages. Luciferase reporter assay showed that novel-mir50 and miR-9c-5p could downregulate the expression of LsAkt. Overexpression of miR-9c-5p and novel-mir50 by injection of mimics inhibited the expression of LsAkt and reduced oviposition, decreased egg hatchability, and blocked ovarian development. It also decreased the expression of genes involved in ovarian development (LsVg and LsVgR) and the nutritional signaling pathway (LsTOR, LsS6K, and Ls4EBP), and reduced the phosphorylation of Akt. Conversely, injection of miR-9c-5p and novel-mir50 inhibitors induced the expressions of LsAkt, LsVg, LsVgR, LsTOR, LsS6K, and Ls4EBP, enhanced Akt phosphorylation level, and accelerated ovarian development. Injection of bovine insulin downregulated the expression of miR-9c-5p and novel-mir50 and upregulated the LsAkt expression. It also rescued the reproductive development defects associated with miR-9c-5p/novel-mir50 overexpression, forming a positive regulatory loop of insulin signaling. These results indicate that miR-9c-5p/novel-mir50 regulates the female reproduction of L. serricorne by targeting Akt in response to insulin signaling. The data also demonstrate the effects of the insulin/miRNA/Akt regulatory axis in insect reproduction.
Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Bovinos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Insulina , ReproduçãoRESUMO
OBJECTIVE: Although increasing evidence reveals the efficacy of traditional Chinese medicine (TCM) and its safety on Tourette Syndrome (TS) patients, whether TCM is indeed improving TS remains unclear. The purpose of the current study is to perform a meta-analysis to evaluate the efficacy and safety of TCM on treating TS patients. METHOD: An elaborate search strategy was conducted based on several databases including Medline, Embase, Cochrane, Web of Science, CINAHL, CBM, VIP, CNKI, and Wanfang Data in order to identify the relevant randomized controlled trials (RCTs) from their inception to as late as May 1st, 2020. General information and data needing analysis were extracted simultaneously for the necessity of various analyses such as descriptive analysis and metaquantitative analysis. RESULTS: Forty-seven trials with 5437 TS patients in total were eventually included according to our criteria. All trials were conducted in China, and the publication years ranged from 2004 to 2017. In terms of clinical efficacy, clinical symptoms of patients with TCM were more likely to be improved compared with the control group (odds ratio, OR = -1.29, 95% confidence interval, CI: -2.54 to -0.06, I 2 = 0.00%). As to the outcome of recurrence rate, the pooled results revealed that the TCM group was more inclined to stabilize the recurrence (OR = 0.44, 95% CI: 0.24 to 0.78, I 2 = 0.00%). Similar results were observed in adverse reaction (OR = 0.32, 95% CI: 0.24 to 0.43, I 2 = 32.90%). CONCLUSION: The results of our study recommend applying TCM to treat TS patients for better efficacy and safety. Results need to be interpreted cautiously due to certain limitations in our study.
Assuntos
Medicina Tradicional Chinesa , Síndrome de Tourette/terapia , China , Humanos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASD), in the hippocampus (DG and CA1-4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs (sgRNAs) targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions, and defective social reward behaviors. Furthermore, some aspects of ASD and RTT, such as stereotypic behaviors, did not appear in the MECP2 gene-edited monkeys, suggesting that different brain areas likely contribute to distinct ASD symptoms. This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates, paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.
RESUMO
Vapor generation using solar energy is emerging as an efficient technology for wastewater purification and seawater desalination to relieve global water crisis. However, salt deposition on the evaporation surface seriously impairs the long-term steady water evaporation performance. Herein, the flexible salt-rejecting photothermal paper comprising reduced graphene oxide (rGO) and ultralong hydroxyapatite nanowires (HNs) has been developed for high-performance solar energy-driven water evaporation and stable desalination of seawater. The rGO/HN photothermal paper has advantages such as the hierarchical porous structure, interconnected channels, high mechanical strength, high efficiencies of solar light absorption and photothermal conversion, fast water transportation, and good heat insulation and salt-rejecting properties. Furthermore, the hydrophilicity and hydrophobicity of the rGO/HN photothermal paper can be adjusted by regulating the thermal treatment time. The water evaporation rate and energy efficiency of the hydrophilic rGO/HN photothermal paper are 1.48 kg m-2 h-1 and 89.2%, respectively, under 1 sun illumination (1 kW m-2). The hydrophobic rGO/HN photothermal paper shows a long-time stable water evaporation and salt-rejecting performance in the process of seawater desalination. The flexible salt-rejecting rGO/HN photothermal paper can produce clean water from wastewater and seawater with high rejection rates of organic dyes, metal ions, and salt ions, and it is promising for applications in water purification and seawater desalination.
RESUMO
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium-ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal-organic-frameworks with well-controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4 @NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni-Co-based metal-organic framework (NiCo-MOF) and characterized by scanning electron microscopy, transition electron microscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4 @NC composite exhibits a capacity of 325â mAh g-1 at a current density of 1â A g-1 , and 277.8â mAh g-1 at 10â A g-1 . Most importantly, the NiCoSe4 @NC retains a capacity of 293â mAh g-1 at 1â A g-1 after 1500â cycles, with a capacity decay rate of 0.025 % per cycle.
RESUMO
The direct transformation of external energy into mechanical work by the self-propelled motor inspires and promotes the development of miniaturized machines. Several strategies have been utilized to realize the self-driven motion, but in some cases multiple power sources are needed, and this would complicate the operation in diverse environments. In this regard, the dual-mode self-propelled system based on a single power source is highly desirable. In this work, single-light-actuated dual-mode propulsion at the liquid/air interface is realized by using flexible, superhydrophobic, and thermostable photothermal paper made from flexible ultralong hydroxyapatite nanowires, titanium sesquioxide (Ti2O3) particles, and poly(dimethylsiloxane) coating. The superhydrophobic surface enables the thermostable photothermal paper to float on the water surface spontaneously and significantly reduces the drag force. In the usual situation, the heat power produced by the photothermal effect is utilized to trigger the Marangoni propulsion. While the Marangoni effect is quenched in water containing the surfactant, the propulsion mode can be directly switched into the vapor-enabled propulsion mode by simply increasing the light power density. Particularly, the light-driven motion in a linear, curvilinear, or rotational manner can be realized by designing the self-propelled machines with appropriate shapes by using the processable photothermal paper. It is expected that the as-prepared dual-mode self-propelled, flexible, superhydrophobic, and thermostable photothermal paper-based devices have promising applications in various fields such as microrobots, biomedicine, and environmental monitoring.
RESUMO
Solar energy-driven interfacial water evaporation is a promising energy utilization technology in the field of seawater desalination and water purification. However, the accumulation of salt on the heating surface severely impairs the water evaporation performance and long-time stability. Herein, we demonstrate a new kind of photothermal paper comprising a high-temperature-resistant paper made from ultralong hydroxyapatite nanowires and glass fibers and black nickel oxide (NiO) nanoparticles for solar energy-driven desalination. Owing to the high photothermal conversion ability, fast water transportation in the air-laid paper, and good heat insulation, the hydrophilic HN/NiO photothermal paper can achieve efficient, stable and recyclable water evaporation performance. In addition, a Janus HN/NiO photothermal paper based on hydrophobic sodium oleate-modified ultralong hydroxyapatite nanowires has been developed, and it has a high water evaporation efficiency of 83.5% under 1 kW m-2 irradiation. In particular, with the bottom hydrophobic ultralong hydroxyapatite nanowire layer and water-transporting channels in the air-laid paper to facilitate salt exchange, the as-prepared Janus evaporator exhibits no salt accumulation on the surface, high performance and long-time stable desalination using simulated seawater (3.5 wt% NaCl). Furthermore, the Janus evaporator with the hydrophobic ultralong hydroxyapatite nanowire substrate can be extended to support other photothermal materials such as black titanium oxide (Ti2O3) and Ketjen black carbon. The as-prepared Janus HN/Ti2O3 and Janus HN/KB photothermal paper also exhibit salt-resistant desalination function. The as-prepared Janus salt-resistant photothermal paper with efficient, stable and recyclable merits has great potential in solar energy-driven desalination and water purification.
RESUMO
Developing high-performance catalysts for oxygen evolution reaction (OER) is critical for the widespread applications of clean and sustainable energy through electrochemical devices such as zinc-air batteries and (photo)electrochemical water splitting. Constructing heterostructure and oxygen vacancies have demonstrated great promises to boost the OER performance. Herein, we report a facile strategy to fabricate hetero-structured NiFe2 O4 /Ni3 S4 nanorods, where NiFe2 O4 can be derived from Fe-based metal-organic frameworks (MOFs). The NiFe2 O4 /Ni3 S4 catalyst exhibited excellent OER performance, evidenced by an overpotential value of 357â mV at the current density of 20â mA cm-2 , and a small Tafel slope of 87.46â mV dec-1 in 1 M KOH, superior to the benchmark IrO2 catalyst. Moreover, NiFe2 O4 /Ni3 S4 outperformed with regard to long-term durability for OER than IrO2 . Such outstanding OER performance is mainly accounted by the interface between NiFe2 O4 and Ni3 S4 , and the presence of rich oxygen vacancies. When employed as air-cathode in zinc-air batteries, the NiFe2 O4 /Ni3 S4 decorated battery had a high round-trip efficiency of 62.1% at 10â h, and possessed long-term stability of >50â h. This study may pave the way for fabricating non-noble-metal-based cost-effective, efficient and durable electrocatalysts for OER, zinc-air batteries, and beyond.
RESUMO
Sleep is indispensable for human health, with sleep disorders initiating a cascade of negative consequences. As our closest phylogenetic relatives, non-human primates (NHPs) are invaluable for comparative sleep studies and exhibit tremendous potential for improving our understanding of human sleep and related disorders. Previous work on measuring sleep in NHPs has mostly used electroencephalography or videography. In this study, simultaneous videography and actigraphy were applied to observe sleep patterns in 10 cynomolgus monkeys ( Macaca fascicularis) over seven nights (12 h per night). The durations of wake, transitional sleep, and relaxed sleep were scored by analysis of animal behaviors from videography and actigraphy data, using the same behavioral criteria for each state, with findings then compared. Here, results indicated that actigraphy constituted a reliable approach for scoring the state of sleep in monkeys and showed a significant correlation with that scored by videography. Epoch-by-epoch analysis further indicated that actigraphy was more suitable for scoring the state of relaxed sleep, correctly identifying 97.57% of relaxed sleep in comparison with video analysis. Only 34 epochs (0.13%) and 611 epochs (2.30%) were differently interpreted as wake and transitional sleep compared with videography analysis. The present study validated the behavioral criteria and actigraphy methodology for scoring sleep, which can be considered as a useful and a complementary technique to electroencephalography and/or videography analysis for sleep studies in NHPs.
Assuntos
Haplorrinos/fisiologia , Sono , Gravação em Vídeo/métodos , Actigrafia/métodos , Actigrafia/veterinária , AnimaisRESUMO
A novel Schiff base ligand (L = 7-methoxychromone-3-carbaldehyde benzoyl hydrazone) and its La(III) and Eu(III) complexes have been successfully prepared. The crystal structure of [LaL(2)(NO(3))(3)].H(2)O was characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with crystallographic data: a = 27.7173(17) A, b = 10.0002(6) A, c = 14.7884(9) A, beta = 102.6870(10) degrees and Z = 4. In the structure, the La(III) ion satisfies 12 coordination and three nitrate coordinate as bidentate ligand. The biological experiments show that the ligand and its two complexes can strongly bind to DNA through intercalation mode, and the three compounds also exhibit good antioxidant activities against OH(*) and O(2) (-*). Moreover, it is found that the Eu(III) complex exhibits characteristic fluorescence of europium ion in different organic solvent.
Assuntos
Cromonas/química , DNA/metabolismo , Európio/química , Fluorescência , Hidrazonas/química , Lantânio/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Absorção , Antineoplásicos/análise , Cristalografia por Raios X , DNA/análise , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Radical Hidroxila/química , Substâncias Intercalantes/química , Ligantes , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Superóxidos/química , ViscosidadeRESUMO
The neutral mononuclear Ln(III) complexes (Ln = La, Sm) with 7-methoxychrom-one-3-carbaldehyde-isonicotinoyl hydrazone ligand (L) have been synthesized, characterized and investigated their interactions with calf-thymus DNA. The results show that the binding affinity of the La(III) complex is stronger than that of the Sm(III) complex and that of the ligand (L). Furthermore, the antioxidant activities of the ligand (L) and its Ln(III) complexes (Ln = La, Sm) were studied in detail.
Assuntos
Antioxidantes/metabolismo , DNA/metabolismo , Lantânio/metabolismo , Samário/metabolismo , Bases de Schiff/metabolismo , Animais , Antioxidantes/síntese química , Sítios de Ligação , Bovinos , Cromonas/química , Cristalização , Cristalografia por Raios X , Hidrazonas/química , Lantânio/química , Ligantes , Modelos Moleculares , Samário/química , Bases de Schiff/síntese química , Espectrometria de Fluorescência , Espectrofotometria AtômicaRESUMO
Graphitic carbon nitride (g-C3 N4 ) has been widely explored as a photocatalyst for water splitting. The anodic water oxidation reaction (WOR) remains a major obstacle for such processes, with issues such as low surface area of g-C3 N4 , poor light absorption, and low charge-transfer efficiency. In this work, such longtime concerns have been partially addressed with band gap and surface engineering of nanostructured graphitic carbon nitride (g-C3 N4 ). Specifically, surface area and charge-transfer efficiency are significantly enhanced through architecting g-C3 N4 on nanorod TiO2 to avoid aggregation of layered g-C3 N4 . Moreover, a simple phosphide gas treatment of TiO2 /g-C3 N4 configuration not only narrows the band gap of g-C3 N4 by 0.57â eV shifting it into visible range but also generates inâ situ a metal phosphide (M=Fe, Cu) water oxidation cocatalyst. This TiO2 /g-C3 N4 /FeP configuration significantly improves charge separation and transfer capability. As a result, our non-noble-metal photoelectrochemical system yields outstanding visible light (>420â nm) photocurrent: approximately 0.3â mA cm-2 at 1.23â V and 1.1â mA cm-2 at 2.0â V versus RHE, which is the highest for a g-C3 N4 -based photoanode. It is expected that the TiO2 /g-C3 N4 /FeP configuration synthesized by a simple phosphide gas treatment will provide new insight for producing robust g-C3 N4 for water oxidation.
RESUMO
Tubular hematite with high-concentration, uniform doping is regarded as a promising material for photoelectrochemical water oxidation. However, the high-temperature annealing commonly used for activating doped hematite inevitably causes deformation of the tubular structure and an increase in the trap states. In the present work, Sn-doped tubular hematite on fluorine-doped tin oxide (FTO) is successfully obtained at 750 °C from a Sn-coated FeOOH tube precursor. Sn/P codoping, which is rarely considered for hematite, is also achieved via a gas phase reaction in phosphide atmosphere. The tubular morphology allows the dopant to diffuse from both the inner and outer surfaces, thus decreasing the doping profile in the radial direction. The even distribution of Sn and P synergetically increases the carrier density of hematite by one order of magnitude, which shortens the width of the depletion layer to ca. 2.3 nm (compared with 19.3 nm for the pristine sample) and leads to prolonged carrier lifetime and efficient charge separation. In addition, this codoping protocol does not introduce additional surface trap states, as evidenced by the increased charge injection efficiency and surface kinetic analysis using intensity modulated photocurrent spectroscopy (IMPS). As a result, the morphology- and doping-engineered hematite exhibits photocurrents of 0.9 mA cm-2 at 1.23 V and 3.8 mA cm-2 at 2.0 V vs. RHE under AM 1.5 G illumination (100 mW cm-2) in 1.0 M NaOH, representing 4.5-fold and 4.8-fold enhancements, respectively, compared with the photocurrents of undoped hematite. The present method is shown to be effective for preparing multi-element-doped hematite nanotubes and may find broad application in the development of other nanotubular photoelectrodes with or without doping for efficient and robust water oxidation.
RESUMO
Two novel rare earth complexes, Y(III) complex (1) and Eu(III) complex (2), with naringenin-2-hydroxy benzoyl hydrazone ligand were synthesized and characterized. The interaction of the two metal complexes and the free ligand with calf thymus DNA (CT DNA) was investigated by electronic absorption spectroscopy, fluorescence spectroscopy and viscosity measurement. All the experimental evidences indicate that these three compounds can strongly bind to CT DNA via an intercalation mechanism. The intrinsic binding constants of the Y(III) complex (1), Eu(III) complex (2) and the free ligand with CT DNA were 2.1 x 10(4), 8.5 x 10(4) and 1.6 x 10(4) M(-1), respectively. Furthermore, the antioxidant activity of the metal complexes was determined by hydroxyl radical scavenging method in vitro.
Assuntos
Antioxidantes/síntese química , DNA/genética , Flavanonas/síntese química , Hidrazonas/síntese química , Antioxidantes/química , Elétrons , Flavanonas/química , Hidrazonas/química , Radical Hidroxila/química , Ligantes , Metais Terras Raras , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , ViscosidadeRESUMO
A variety of biological materials in natural organisms supply a rich source of structural design guidelines and inspirations for the construction of advanced structural materials with excellent mechanical properties. In this work, inspired by the natural nacre and human bone, a kind of flexible macroscopic ribbon fiber made from highly ordered alignment of ultralong hydroxyapatite (HAP) nanowires and sodium polyacrylate (PAAS) with a "brick-and-mortar" layered structure has been developed by a scalable and convenient wet-spinning method. The quasi-long-range orderly liquid crystal of one-dimensional ultralong hydroxyapatite nanowires is employed and spun into the continuous flexible macroscopic ribbon fiber. In this work, highly ordered ultralong HAP nanowires act as the hard "brick" and PAAS acts as the soft "mortar", and the nacre-mimetic layered architecture is obtained. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber exhibits superior mechanical properties, and the maximum tensile strength and Young's modulus are as high as 203.58 ± 45.38 MPa and 24.56 ± 5.35 GPa, respectively. In addition, benefiting from the excellent flexibility and good knittability, the as-prepared macroscopic HAP/PAAS ribbon fiber can be woven into various flexible macroscopic architectures. Additionally, the as-prepared flexible macroscopic HAP/PAAS ribbon fiber can be further functionalized by incorporation of various functional components, such as magnetic and photoluminescent constituents. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber has potential applications in various fields such as smart wearable devices, optical devices, magnetic devices, and biomedical engineering.
RESUMO
Developing high surface area nanostructured electrodes with fast charge separation is one of the main challenges for exploring cupric oxide (CuO)-based photocathodes in solar-driven hydrogen production applications. Herein, brand new 1D branched CuO nanowire arrays have been achieved on fluorine-doped tin oxide-coated glass (FTO) through a two-step wet chemical redox reaction. X-ray diffraction patterns, Raman spectra and X-ray photoelectron spectroscopy confirm the pure phase characteristic of the resulting branched CuO. In addition to the enlarged surface area of this advanced functional structure as compared with that of the 1D wire trunk, the charge injection and separation have been improved by rationally controlling the density of defects and size of branches. As a result, the optimized branched CuO exhibits photocurrent as high as 3.6 mA·cm-2 under AM 1.5G (100 mW·cm-2) illumination and 3.0 mA·cm-2 under visible light (λ > 420 nm) at 0.2 V vs. RHE in 0.5 M Na2SO4, which are 2.8- and 3.0-fold greater than those of 1D wire samples, respectively. In addition, the solution-processed approach established herein seems quite favourable for large-scale and low-cost manufacturing.