Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(4): 562-580, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756879

RESUMO

BACKGROUND: Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS: We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS: Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS: Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.


Assuntos
Aterosclerose , Mucosa Intestinal , Humanos , Masculino , Animais , Camundongos , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorção Intestinal/fisiologia , Gorduras na Dieta , Quilomícrons/metabolismo , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Aterosclerose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Cancer Cell Int ; 23(1): 68, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37062825

RESUMO

Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme in gluconeogenesis. PCK1 is considered an anti-oncogene in several human cancers. In this study, we aimed to determine the functions of PCK1 in colorectal cancer (CRC). PCK1 expression in CRC tissues was tested by western blot and immunohistochemistry analyses and associations of PCK1 level with clinicopathological characteristics and disease survival evaluated. Further, we studied the effect of PCK1 on CRC cell proliferation and the underlying mechanisms. Our results show that PCK1 is expressed at significantly lower levels in CRC than in control tissues. High PCK1 expression was correlated with smaller tumor diameter and less bowel wall invasion (T stage). Overexpression and knockdown experiments demonstrated that PCK1 inhibits CRC cell growth both in vitro and in vivo. Mechanistically, PCK1 antagonizes CRC growth via inactivating UBAP2L phosphorylation at serine 454 and enhancing autophagy. Overall, our findings reveal a novel molecular mechanism involving PCK1 and autophagy, and highlight PCK1 as a promising candidate therapeutic target in CRC.

3.
Sheng Li Xue Bao ; 75(5): 682-690, 2023 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-37909139

RESUMO

Metabolic associated fatty liver disease (MAFLD) is a liver disease with hepatocyte steatosis caused by metabolic disorders, which is closely related to obesity, diabetes, metabolic dysfunction, and other factors. Its pathological process changes from simple steatosis, liver inflammation to non-alcoholic steatohepatitis (NASH), and then leads to liver fibrosis, cirrhosis, and liver cancer. At present, no specific therapeutics are available for treatment of MAFLD targeting its etiology. Celastrol is the main active component of the traditional Chinese medicine Celastrus orbiculatus Thunb. In recent years, it has been found that celastrol shows important medicinal value in regulating lipid metabolism, reducing fat and weight, and protecting liver, and then ameliorates MAFLD. This article reviews the related research progress of celastrol in the prevention and treatment of MAFLD, so as to provide a reference for the comprehensive development and utilization of celastrol.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/patologia , Triterpenos Pentacíclicos/metabolismo , Obesidade
4.
J Cell Mol Med ; 26(14): 4113-4123, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35734974

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide with increasing incidence consistent with obesity, type 2 diabetes and cardiovascular diseases. No approved medication was currently available for NAFLD treatment. Molecular hydrogen (H2 ), an anti-oxidative, anti-inflammatory biomedical agent is proved to exhibit therapeutic and preventive effect in various diseases. The purpose of this study was to investigate the effect of hydrogen/oxygen inhalation on NAFLD subjects and explore the mechanism from the perspective of hepatocyte autophagy. We conducted a randomized, placebo-controlled clinical trial of 13-week hydrogen/oxygen inhalation (China Clinical Trial Registry [#ChiCTR-IIR-16009114]) including 43 subjects. We found that inhalation of hydrogen/oxygen improved serum lipid and liver enzymes. Significantly improved liver fat content detected by ultrasound and CT scans after hydrogen/oxygen inhalation was observed in moderate-severe cases. We also performed an animal experiment based on methionine and choline-deficient (MCD) diet-induced mice model to investigate effect of hydrogen on mouse NASH. Hydrogen/oxygen inhalation improved systemic inflammation and liver histology. Promoted autophagy was observed in mice inhaled hydrogen/oxygen and treatment with chloroquine blocked the beneficial effect of hydrogen. Moreover, molecular hydrogen inhibited lipid accumulation in AML-12 cells. Autophagy induced by palmitic acid (PA) incubation was further promoted by 20% hydrogen incubation. Addition of 3-methyladenine (3-MA) partially blocked the inhibitory effect of hydrogen on intracellular lipid accumulation. Collectively, hydrogen/oxygen inhalation alleviated NAFLD in moderate-severe patients. This protective effect of hydrogen was possibly by activating hepatic autophagy.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Anti-Inflamatórios/farmacologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Oxigênio/farmacologia , Ácido Palmítico/farmacologia
5.
Lipids Health Dis ; 21(1): 75, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982498

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory skin disorder related to dyslipidemia, with decreased high-density lipoprotein (HDL). Various cell types express phospholipid transfer protein (PLTP) as well as cholesteryl ester transfer protein (CETP). Their elevated levels among transgenic (Tg) mice led to reduced HDL and a higher risk of atherosclerosis (AS). This study examined whether elevated CETP and PLTP could aggravate psoriasis in a psoriasis vulgaris mouse model. METHODS: The back skins of CETP-Tg, PLTP-Tg, and C57BL/6 male mice, aged six to 8 weeks, were shaved for imiquimod cream (IMQ) (5%) treatment for five consecutive days. The clinical pathological parameters were rated independently using the modified target lesion psoriasis severity score. The skin sections stained with hematoxylin-eosin were scored by the Baker score. Epidermal thickening and differentiation and inflammatory factor infiltration were determined by immunohistochemistry. Inflammatory cytokine levels were measured using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) kits. This work employed SPSS Statistics Version to conduct statistical analyses. RESULTS: In this study, CETP-Tg and PLTP-Tg mice had higher clinical and histological scores than wild-type (WT) mice. Immunohistochemistry of the epidermis and dermis revealed a high proportion of proliferating cell nuclear antigen (PCNA) positivity within psoriatic skin lesions of CETP-Tg and PLTP-Tg mice compared with WT mice. Interferon-α (IFN-α), interleukin-1ß (IL-1ß), IL-6, IL-17A, IL-17F, IL-22, and IL-23p19 mRNA levels increased within CETP-Tg and PLTP-Tg mice compared with WT counterparts. In comparison with WT mice, plasma tumor necrosis factor-α (TNF-α) levels, rather than IL-6 levels, were increased in CETP-Tg and PLTP-Tg mice. CONCLUSIONS: Elevated CETP and PLTP aggravate psoriasis in a imiquimod-induced mouse model.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Proteínas de Transferência de Fosfolipídeos , Psoríase , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Interleucina-6 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Transferência de Fosfolipídeos/genética , Psoríase/induzido quimicamente , Psoríase/genética
6.
Angew Chem Int Ed Engl ; 61(9): e202114594, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34921480

RESUMO

To reveal the biomedical effects and mechanisms of hydrogen molecules urgently needs hydrogen molecular imaging probes as an imperative tool, but the development of these probes is extremely challenging. A catalytic hydrogenation strategy is proposed to design and synthesize a ratiometric fluorescent probe by encapsulating Pd nanoparticles and conjugating azido-/coumarin-modified fluorophore into mesoporous silica nanoparticles, realizing in vitro and in vivo fluorescence imaging of hydrogen molecules. The developed hydrogen probe exhibits high sensitivity, rapid responsivity, high selectivity and low detection limit, enabling rapid and real-time detection of hydrogen molecules both in cells and in the body of animal and plant. By application of the developed fluorescent probe, we have directly observed the super-high transmembrane and ultrafast transport abilities of hydrogen molecules in cells, animals and plants, and discovered in vivo high diffusion of hydrogen molecules.


Assuntos
Corantes Fluorescentes/química , Hidrogênio/análise , Imagem Molecular , Animais , Azidas/química , Cumarínicos/química , Corantes Fluorescentes/síntese química , Humanos , Paládio/química , Dióxido de Silício/química , Fatores de Tempo
7.
J Lipid Res ; 62: 100091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118252

RESUMO

Plasma LDL is produced from catabolism of VLDL and cleared from circulation mainly via the hepatic LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDLR degradation, increasing plasma LDL-C levels. Circulating PCSK9 is mainly secreted by the liver, whereas VLDL is exclusively secreted by hepatocytes. However, the mechanism regulating their secretion is not completely understood. Surfeit 4 (Surf4) is a cargo receptor localized in the ER membrane. It recruits cargos into coat protein complex II vesicles to facilitate their secretion. Here, we investigated the role of Surf4 in VLDL and PCSK9 secretion. We generated Surf4 liver-specific knockout mice and found that knockout of Surf4 did not affect PCSK9 secretion, whereas it significantly reduced plasma levels of cholesterol, triglyceride, and lipid-binding protein apolipoprotein B (apoB). In cultured human hepatocytes, Surf4 coimmunoprecipitated and colocalized with apolipoprotein B100, and Surf4 silencing reduced secretion of apolipoprotein B100. Furthermore, knockdown of Surf4 in LDLR knockout (Ldlr-/-) mice significantly reduced triglyceride secretion, plasma levels of apoB and non-HDL-C, and the development of atherosclerosis. However, Surf4 liver-specific knockout mice and Surf4 knockdown in Ldlr-/- mice displayed similar levels of liver lipids and plasma alanine aminotransferase activity as control mice, indicating that inhibition of Surf4 does not cause notable liver damage. Expression of stearoyl-CoA desaturase-1 was also reduced in the liver of these mice, suggesting a reduction in de novo lipogenesis. In summary, hepatic deficiency of Surf4 reduced VLDL secretion and the development of atherosclerosis but did not cause significant hepatic lipid accumulation or liver damage.


Assuntos
Aterosclerose/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células Cultivadas , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
8.
Sheng Li Xue Bao ; 73(1): 69-81, 2021 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-33665662

RESUMO

Phospholipids are important components of biomembrane and lipoproteins. Phospholipids can be oxidized by free radicals/nonradicals and enzymes to form oxidized phospholipids (OxPLs), which can lead to further generation of oxidation products with different biological activities. Clinical evidence shows that OxPLs are constantly generated and transformed during the pathogenesis of atherosclerosis and accumulated at the lesion sites. OxPLs are highly heterogeneous mixtures that can influence the progress of atherosclerosis through a variety of related receptors or signaling pathways. This review summarizes the process of phospholipid oxidation, the related products, the interaction of OxPLs with endothelial cells, monocytes/macrophages, smooth muscle cells, platelets and lipoproteins involved in the pathological process of atherosclerosis, and the progress of the researches using OxPLs as a target to inhibit atherosclerosis in recent years.


Assuntos
Aterosclerose , Fosfolipídeos , Células Endoteliais , Humanos , Miócitos de Músculo Liso , Oxirredução
9.
Psychogeriatrics ; 21(4): 659-667, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33851473

RESUMO

Phospholipid transfer protein (PLTP) is a complex glycosylated protein that mediates the transfer of phospholipids, unesterified cholesterol, diacylglycerides, specific apolipoproteins, and tocopherols between different classes of lipoproteins as well as between lipoproteins and cells. Many studies have associated PLTP with a variety of lipid metabolic diseases. However, recent studies have indicated that PLTP is highly expressed in the brain of vertebrate and may be related to many central nervous system diseases, such as Alzheimer's disease. Here, we review the data and report the role and mechanisms PLTP in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Fosfolipídeos , Encéfalo/metabolismo , Colesterol , Humanos , Lipoproteínas , Proteínas de Transferência de Fosfolipídeos/metabolismo
10.
Adv Exp Med Biol ; 1276: 157-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705599

RESUMO

Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are two kinds of common lipoproteins in plasma. The level of LDL cholesterol in plasma is positively correlated with atherosclerosis (AS), which is related to the complex macromolecular components, especially the easy oxygenation of protein and lipid components. However, the plasma HDL cholesterol level is negatively correlated with AS, but the results of recent studies show that the oxidative modified HDL in pathological state will not reduce and may aggravate the occurrence and development of AS. Therefore, the oxidative modification of lipoproteins is closely related to vascular homeostasis, which has become a hot research area for a long time.


Assuntos
Aterosclerose , Lipoproteínas HDL , Lipoproteínas LDL , HDL-Colesterol , Humanos , Oxirredução , Estresse Oxidativo
11.
J Lipid Res ; 60(3): 516-527, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617148

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDL receptor (LDLR) degradation, increasing plasma levels of LDL cholesterol and the risk of cardiovascular disease. We have previously shown that, in addition to the epidermal growth factor precursor homology repeat-A of LDLR, at least three ligand-binding repeats (LRs) of LDLR are required for PCSK9-promoted LDLR degradation. However, how exactly the LRs contribute to PCSK9's action on the receptor is not completely understood. Here, we found that substitution of Asp at position 172 in the linker between the LR4 and LR5 of full-length LDLR with Asn (D172N) reduced PCSK9 binding at pH 7.4 (mimic cell surface), but not at pH 6.0 (mimic endosomal environment). On the other hand, mutation of Asp at position 203 in the LR5 of full-length LDLR to Asn (D203N) significantly reduced PCSK9 binding at both pH 7.4 and pH 6.0. D203N also significantly reduced the ability of LDLR to mediate cellular LDL uptake, whereas D172N had no detectable effect. These findings indicate that amino acid residues in the LRs of LDLR play an important role in PCSK9 binding to the receptor.


Assuntos
Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Sequências Repetitivas de Aminoácidos , Células HEK293 , Humanos , Ligantes , Lipoproteínas LDL/metabolismo , Mutação , Ligação Proteica , Receptores de LDL/genética
12.
J Cell Mol Med ; 23(4): 2954-2969, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30746902

RESUMO

This study was designed to explore the inductive effect of glycated high-density lipoprotein (gly-HDL) on endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-mediated macrophage apoptosis and its relationship with autophagy. Our results showed that gly-HDL caused macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2α, and CHOP up-regulation, which were inhibited by 4-phenylbutyric acid (PBA, an ER stress inhibitor) and the gene silencing of PERK and CHOP. Similar data were obtained from macrophages treated by HDL isolated from diabetic patients. Gly-HDL induced macrophage autophagy as assessed by up-regulation of beclin-1, autophagy-related gene 5 and microtubule-associated protein one light chain 3-II, which were depressed by PBA and PERK siRNA. Gly-HDL-induced apoptosis, PERK phosphorylation and CHOP up-regulation were suppressed by rapamycin (an autophagy inducer), whereas aggravated by 3-methyladenine (an autophagy inhibitor) and beclin-1 siRNA. Administration of diabetic apoE-/- mice with rapamycin attenuated MOMA-2 and CHOP up-regulation and apoptosis in atherosclerotic lesions. These data indicate that gly-HDL may induce macrophage apoptosis through activating ER stress-CHOP pathway and ER stress mediates gly-HDL-induced autophagy, which in turn protects macrophages against apoptosis by alleviating CHOP pathway.


Assuntos
Apoptose , Aterosclerose/patologia , Autofagia , Estresse do Retículo Endoplasmático , Lipoproteínas HDL/química , Macrófagos/patologia , Fator de Transcrição CHOP/antagonistas & inibidores , Animais , Aterosclerose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glicólise , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Transdução de Sinais
13.
Respir Res ; 20(1): 131, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31242908

RESUMO

BACKGROUND: Patients with acute lung injury (ALI) have increased levels of pro-inflammatory mediators, which impair endothelial progenitor cell (EPC) function. Increasing the number of EPC and alleviating EPC dysfunction induced by pro-inflammatory mediators play important roles in suppressing ALI development. Because the high density lipoprotein reverse-D-4F (Rev-D4F) improves EPC function, we hypothesized that it might repair lipopolysaccharide (LPS)-induced lung damage by improving EPC numbers and function in an LPS-induced ALI mouse model. METHODS: LPS was used to induce ALI in mice, and then the mice received intraperitoneal injections of Rev-D4F. Immunohistochemical staining, flow cytometry, MTT, transwell, and western blotting were used to assess the effect of Rev-D4F on repairment of lung impairment, and improvement of EPC numbers and function, as well as the signaling pathways involved. RESULTS: Rev-D4F inhibits LPS-induced pulmonary edema and decreases plasma levels of the pro-inflammatory mediators TNF-α and ET-1 in ALI mice. Rev-D4F inhibited infiltration of red and white blood cells into the interstitial space, reduced lung injury-induced inflammation, and restored injured pulmonary capillary endothelial cells. In addition, Rev-D4F increased numbers of circulating EPC, stimulated EPC differentiation, and improved EPC function impaired by LPS. Rev-D4F also acted via a PI3-kinase-dependent mechanism to restore levels of phospho-AKT, eNOS, and phospho-eNOS suppressed by LPS. CONCLUSIONS: These findings indicate that Rev-D4F has an important vasculoprotective role in ALI by improving the EPC numbers and functions, and Rev-D4F reverses LPS-induced EPC dysfuncion partially through PI3K/AKT/eNOS signaling pathway.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Células Progenitoras Endoteliais/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Peptídeos/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Animais , Relação Dose-Resposta a Droga , Células Progenitoras Endoteliais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia
14.
Acta Biochim Biophys Sin (Shanghai) ; 51(12): 1189-1197, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31738389

RESUMO

Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen's biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Células Cultivadas , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Sheng Li Xue Bao ; 71(2): 371-377, 2019 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-31008498

RESUMO

Molecular hydrogen (H2) has been shown to have diverse biomedical effects. As a small molecular gas, hydrogen can be diffused to the target without hindrance. A variety of related hydrogen products used in medical research and public health have been developed. There are various methods of administration of H2, mainly including inhaling hydrogen gas, drinking hydrogen water, injecting hydrogen-saline, orally taking solid-state H2 sustained-release agents, and stimulating intestinal microbiomes to produce hydrogen. Pharmacokinetics of H2 in vivo vary with methods of administration and thus influence its biomedical effects. This review summarizes the types of H2 donors and their pharmacokinetics in vivo.


Assuntos
Hidrogênio/administração & dosagem , Hidrogênio/farmacocinética
16.
Sheng Li Xue Bao ; 70(5): 557-564, 2018 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-30377695

RESUMO

For a long time, hydrogen (H2) has been considered as a physiological inert gas. However, recent studies have demonstrated that molecular H2 exerts significant therapeutic effects on various disease models due to its antioxidative, anti-inflammatory and anti-apoptotic capabilities, which have also been well confirmed in many clinical trials. Cardiovascular and cerebrovascular diseases (CCVDs) are the leading cause of death in the world, constituting a serious threat to human life and public health. In this paper, we reviewed the latest research progress of the biomedical effects of H2 in CCVDs and its possible molecular mechanisms, in the hope of providing new clues for the treatment of some CCVDs.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Hidrogênio/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/prevenção & controle , Transtornos Cerebrovasculares/prevenção & controle , Humanos
17.
J Lipid Res ; 58(1): 164-177, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895089

RESUMO

Oxidized HDL (ox-HDL), unlike native HDL that exerts antiatherogenic effects, plays a proatherogenic role. However, the underlying mechanisms are not completely understood. This study was designed to explore the inductive effect of ox-HDL on endoplasmic reticulum (ER) stress-CCAAT-enhancer-binding protein homologous protein (CHOP)-mediated macrophage apoptosis and its upstream mechanisms. Our results showed that ox-HDL could be ingested by macrophages, causing intracellular lipid accumulation. As with tunicamycin (an ER stress inducer), ox-HDL induced macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and upregulation of glucose-regulated protein 78 and CHOP, which were inhibited by 4-phenylbutyric acid (PBA, an ER stress inhibitor) and CHOP gene silencing. Additionally, diphenyleneiodonium (DPI, an oxidative stress inhibitor), probucol (a reactive oxygen species scavenger), and toll-like receptor 4 (TLR4) silencing reduced ox-HDL-induced macrophage apoptosis, oxidative stress, and CHOP upregulation. Moreover, HDL isolated from patients with metabolic syndrome induced macrophage apoptosis, oxidative stress, and CHOP upregulation, which were blocked by PBA and DPI. These data indicate that ox-HDL may activate ER stress-CHOP-induced apoptotic pathway in macrophages via enhanced oxidative stress and that this pathway may be mediated by TLR4.


Assuntos
Aterosclerose/genética , Receptor 4 Toll-Like/genética , Fator de Transcrição CHOP/genética , Apoptose/genética , Aterosclerose/patologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Oniocompostos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição CHOP/metabolismo
18.
J Cell Mol Med ; 21(1): 107-120, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27511707

RESUMO

Oxidative stress and inflammation play important roles in the pathogenesis of cardiovascular disease (CVD). Oxidative stress-induced desialylation is considered to be a primary step in atherogenic modification, and therefore, the attenuation of oxidative stress and/or inflammatory reactions may ameliorate CVD. In this study, quercetin 7-O-sialic acid (QA) was synthesized aiming to put together the cardiovascular protective effect of quercetin and the recently reported anti-oxidant and anti-atherosclerosis functions of N-acetylneuraminic acid. The biological efficacy of QA was evaluated in vitro in various cellular models. The results demonstrated that 50 µM QA could effectively protect human umbilical vein endothelial cells (HUVEC, EA.hy926) against hydrogen peroxide- or oxidized low-density lipoprotein-induced oxidative damage by reducing the production of reactive oxygen species. QA attenuated hydrogen peroxide-induced desialylation of HUVEC and lipoproteins. QA decreased lipopolysaccharide-induced secretion of tumour necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), and it significantly reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, TNF-α and MCP-1. Furthermore, QA effectively promoted cholesterol efflux from Raw 264.7 macrophages to apolipoprotein A-1 and high-density lipoprotein by up-regulating ATP-binding cassette transporter A1 and G1, respectively. Results indicated that the novel compound QA exhibited a better capacity than quercetin for anti-oxidation, anti-inflammation, cholesterol efflux promotion and biomolecule protection against desialylation and therefore could be a candidate compound for the prevention or treatment of CVD.


Assuntos
Cardiotônicos/química , Cardiotônicos/farmacologia , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacologia , Quercetina/química , Quercetina/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
Hum Mol Genet ; 24(19): 5388-403, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160914

RESUMO

Phospholipid transfer protein (PLTP) is a widely expressed lipid transfer protein participating in the transport of cholesterol and other lipids in the plasma and peripheral tissues. Recently, elevated amyloid ß (Aß) in young and aged PLTP-deficient brains had been reported. However, the role of PLTP in amyloid precursor protein (APP) processing and Alzheimer's disease (AD) pathology remains elusive. Here we first found that deficiency of PLTP accelerated memory dysfunction in APP/PS1ΔE9 AD model mice at the age of 3 months. Further characterization showed that PLTP deficiency increased soluble Aß peptides, and intracellular accumulation of Aß was illustrated, which might be due to disrupted APP turnover and the enhanced amyloidogenic pathway. Besides, reduced brain-derived neurotrophic factor (BDNF) was found in PLTP-deficient APP/PS1ΔE9 mice, and the BDNF level was negatively correlated with Aß42 content, instead of Aß40 content. In addition, autophagic dysfunction was found in the PLTP-deficient APP/PS1ΔE9 mice. Our data presented a novel model to link phospholipid metabolism to APP processing and also suggested that PLTP played an important role in Aß metabolism and would be useful to further elucidate functions of PLTP in AD susceptibility.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Transtornos da Memória/genética , Proteínas de Transferência de Fosfolipídeos/deficiência , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Camundongos
20.
Arterioscler Thromb Vasc Biol ; 36(2): 253-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695502

RESUMO

OBJECTIVE: ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol efflux to lipidated lipoproteins. Conflicting data about cellular localization of ABCG1 and its effect on cholesterol efflux have been reported. Here, we investigated the underlying mechanisms for these different observations. APPROACH AND RESULTS: Confocal microscopy and biotinylation were used to assess cell surface localization of ABCG1. We found that mouse ABCG1 (mABCG1) used in one previous study has a substitution of Leu to Pro at position 550 (mG1-L550P). When the corresponding Leu at position 562 in human ABCG1 (hABCG1) was mutated to Pro (hG1-L562P), the mutant hABCG1, like mG1-L550P, mainly resided intracellularly, whereas wild-type mABCG1 and hABCG1 were localized on the plasma membrane. However, replacement of this Leu with Pro had no significant effect on mABCG1- and hABCG1-mediated cholesterol efflux. CONCLUSIONS: Leu at position 550/562 in mABCG1/hABCG1 is critical for their plasma membrane localization but not for ABCG1-mediated cholesterol efflux. Our findings indicate that the substitution of Leu to Pro at position 550 in mABCG1 may contribute to the non-cell surface localization of mABCG1 observed in the previous study.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Substituição de Aminoácidos , Animais , Genótipo , Células HEK293 , Humanos , Leucina , Lipoproteínas/genética , Camundongos , Microscopia Confocal , Mutação , Fenótipo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA