RESUMO
Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.
RESUMO
In situ monitoring of endogenous amino acid loss through sweat can provide physiological insights into health and metabolism. However, existing amino acid biosensors are unable to quantitatively assess metabolic status during exercise and are rarely used to establish blood-sweat correlations because they only detect a single concentration indicator and disregard sweat rate. Here, we present a wearable multimodal biochip integrated with advanced electrochemical electrodes and multipurpose microfluidic channels that enables simultaneous quantification of multiple sweat indicators, including phenylalanine and chloride, as well as sweat rate. This combined measurement approach reveals a negative correlation between sweat phenylalanine levels and sweat rates among individuals, which further enables identification of individuals at high metabolic risk. By tracking phenylalanine fluctuations induced by protein intake during exercise and normalizing the concentration indicator by sweat rates to reduce interindividual variability, we demonstrate a reliable method to correlate and analyze sweat-blood phenylalanine levels for personal health monitoring.
Assuntos
Técnicas Biossensoriais , Suor , Humanos , Suor/química , Fenilalanina/metabolismo , Sudorese , Técnicas Biossensoriais/métodos , Aminoácidos/metabolismoRESUMO
The artificial nervous system proves the great potential for the emulation of complex neural signal transduction. However, a more bionic system design for bio-signal transduction still lags behind that of physical signals, and relies on additional external sources. Here, this work presents a zero-voltage-writing artificial nervous system (ZANS) that integrates a bio-source-sensing device (BSSD) for ion-based sensing and power generation with a hafnium-zirconium oxide-ferroelectric tunnel junction (HZO-FTJ) for the continuously adjustable resistance state. The BSSD can use ion bio-source as both perception and energy source, and then output voltage signals varied with the change of ion concentrations to the HZO-FTJ, which completes the zero-voltage-writing neuromorphic bio-signal modulation. In view of in/ex vivo biocompatibility, this work shows the precise muscle control of a rabbit leg by integrating the ZANS with a flexible nerve stimulation electrode. The independence on external source enhances the application potential of ZANS in robotics and prosthetics.