Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biol Chem ; 299(3): 102953, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731795

RESUMO

Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Gânglios Espinais , Receptores de Glutamato Metabotrópico , Células Receptoras Sensoriais , Animais , Cricetinae , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Cricetulus , Gânglios Espinais/metabolismo , Dor , Prótons , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Células CHO
2.
J Am Chem Soc ; 146(1): 1174-1184, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153040

RESUMO

Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.

3.
J Neurochem ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987505

RESUMO

Resolvin D2 (RvD2), an endogenous lipid mediator derived from docosahexaenoic acid, has been demonstrated to have analgesic effects. However, little is known about the mechanism underlying RvD2 in pain relief. Herein, we demonstrate that RvD2 targeted the P2X3 receptor as an analgesic. The electrophysiological activity of P2X3 receptors was suppressed by RvD2 in rat dorsal root ganglia (DRG) neurons. RvD2 pre-application dose-dependently decreased α,ß-methylene-ATP (α,ß-meATP)-induced inward currents. RvD2 remarkably decreased the maximum response to α,ß-meATP, without influencing the affinity of P2X3 receptors. RvD2 also voltage-independently suppressed ATP currents. An antagonist of the G protein receptor 18 (GPR18), O-1918, prevented the RvD2-induced suppression of ATP currents. Additionally, intracellular dialysis of the Gαi/o -protein antagonist pertussis toxin (PTX), the PKA antagonist H89, or the cAMP analog 8-Br-cAMP also blocked the RvD2-induced suppression. Furthermore, α,ß-meATP-triggered depolarization of membrane potential along with the action potential bursts in DRG neurons were inhibited by RvD2. Lastly, RvD2 attenuated spontaneous nociceptive behaviors as well as mechanical allodynia produced by α,ß-meATP in rats via the activation of the peripheral GPR18. These findings indicated that RvD2 inhibited P2X3 receptors in rat primary sensory neurons through GPR18, PTX-sensitive Gαi/o -proteins, and intracellular cAMP/PKA signaling, revealing a novel mechanism that underlies its analgesic effects by targeting P2X3 receptors.

4.
J Neurochem ; 163(4): 327-337, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986707

RESUMO

Lysophosphatidic acid (LPA) is a phospholipid which has been implicated in pain. Acid-sensing ion channels (ASICs) are important players in pain associated with tissue acidification. However, it is still unclear whether there is a link between LPA signaling and ASICs in pain processes. Herein, we show that a functional interaction between them in rat dorsal root ganglia (DRG) neurons. Pre-application of LPA enhanced ASIC-mediated and acid-evoked inward currents in a concentration-dependent manner. LPA shifted the concentration-response curve for protons upwards, with an increase of 41.79 ± 4.71% in the maximal current response of ASICs to protons in the presence of LPA. Potentiation of ASIC currents by LPA was blocked by the LPA1 receptor antagonist Ki16198, but not by the LPA2 receptor antagonist H2L5185303. The LPA-induced potentiation was also prevented by intracellular application of either G protein inhibitor or protein kinase C (PKC) inhibitor, but not by Rho inhibitor. LPA also enhanced ASIC3 currents in CHO cells co-expressing ASIC3 and LPA1 receptors, but not in cells expressing ASIC3 alone. Moreover, LPA increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, LPA exacerbated acid-induced nociceptive behaviors in rats. These results suggested that LPA enhanced ASIC-mediated electrophysiological activity and nociception via a LPA1 receptor and its downstream PKC rather than Rho signaling pathway, which provided a novel peripheral mechanism underlying the sensitization of pain.


Assuntos
Gânglios Espinais , Prótons , Ratos , Animais , Cricetinae , Cricetulus , Ratos Sprague-Dawley , Canais Iônicos Sensíveis a Ácido/metabolismo , Neurônios/metabolismo , Dor/metabolismo
5.
J Neurosci Res ; 100(9): 1755-1764, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35592934

RESUMO

Resveratrol can relieve pain under various pain conditions. One of the mechanisms of resveratrol analgesia is the regulation of ion channels. Acid-sensing ion channels (ASICs) are expressed predominantly in nociceptive sensory neurons to detect changes in extracellular pH. ASICs are important players in pain associated with tissue acidification. However, it is still unclear whether ASICs are resveratrol targets. Electrophysiological recordings showed that resveratrol decreased acid-induced and ASIC-mediated currents in male rat dorsal root ganglion (DRG) neurons in a concentration-dependent manner. Resveratrol downwardly shifted the concentration-response curve for protons, suggesting that it inhibited ASICs not by changing the pH0.5 , but by suppressing the proton-induced maximum response. It also suppressed acid-triggered action potentials in the rat DRG neurons. Finally, intraplantar pretreatment with resveratrol relieved acid-induced nociceptive responses in male rats in a dose-dependent manner. These results indicated that resveratrol inhibited ASIC-mediated electrophysiological activity and nociception, suggesting a novel peripheral mechanism underlying its analgesic effect.


Assuntos
Canais Iônicos Sensíveis a Ácido , Gânglios Espinais , Animais , Gânglios Espinais/fisiologia , Masculino , Dor/induzido quimicamente , Dor/tratamento farmacológico , Prótons , Ratos , Ratos Sprague-Dawley , Resveratrol , Células Receptoras Sensoriais
6.
J Neuroinflammation ; 18(1): 92, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853615

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine involved in pain processing and hypersensitivity. It regulates not only the expression of a variety of inflammatory mediators but also the functional activity of some ion channels. Acid-sensing ion channels (ASICs), as key sensors for extracellular protons, are expressed in nociceptive sensory neurons and contribute to pain signaling caused by tissue acidosis. It is still unclear whether TNF-α has an effect on functional activity of ASICs. Herein, we reported that a brief exposure of TNF-α acutely sensitized ASICs in rat dorsal root ganglion (DRG) neurons. METHODS: Electrophysiological experiments on rat DRG neurons were performed in vitro and acetic acid induced nociceptive behavior quantified in vitro. RESULTS: A brief (5min) application of TNF-α rapidly enhanced ASIC-mediated currents in rat DRG neurons. TNF-α (0.1-10 ng/ml) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 0.12 ± 0.01 nM. TNF-α shifted the concentration-response curve of proton upwards with a maximal current response increase of 42.34 ± 7.89%. In current-clamp recording, an acute application of TNF-α also significantly increased acid-evoked firing in rat DRG neurons. The rapid enhancement of ASIC-mediated electrophysiological activity by TNF-α was prevented by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting that p38 MAPK is necessary for this enhancement. Behaviorally, TNF-α exacerbated acid-induced nociceptive behaviors in rats via activation of local p38 MAPK pathway. CONCLUSIONS: These results suggest that TNF-α rapidly enhanced ASIC-mediated functional activity via a p38 MAPK pathway, which revealed a novel peripheral mechanism underlying TNF-α involvement in rapid hyperalgesia by sensitizing ASICs in primary sensory neurons.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ácido Acético/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Neurônios/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
7.
Angew Chem Int Ed Engl ; 60(29): 16093-16100, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33884729

RESUMO

Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.

8.
Chemistry ; 26(18): 4120-4127, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31688979

RESUMO

Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm-2 , which is much lower than that required for IrO2 //Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.

9.
Acta Pharmacol Sin ; 41(8): 1049-1057, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32107467

RESUMO

Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1-100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration-response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Endotelina-1/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Agonistas de Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Gânglios Espinais/citologia , Hiperalgesia/induzido quimicamente , Masculino , Ratos Sprague-Dawley , Receptor de Endotelina A/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Neurosci Res ; 97(10): 1298-1305, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240740

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is an important member of multifunctional growth factor superfamily. It has been implicated in pain signaling, but little is known about the underlying mechanisms. Herein, we report that TGF-ß1 can exert a sustained enhancing effect on the functional activity of acid-sensing ion channels (ASICs) in rat dorsal root ganglia (DRG) neurons. Pre-application of TGF-ß1 increased the amplitude of proton-gated currents in a dose-dependent manner. Enhancement of ASIC currents lasted for more than 30 min although TGF-ß1 was treated once only. This sustained enhancement by TGF-ß1 could be blocked by extracellular treatment of selective TGF-ß receptor I antagonist SD-208, and abolished by blockade of intracellular several non-Smad-signaling pathways. TGF-ß1 also sustainedly enhanced proton-evoked spikes in rat DRG neurons. Moreover, peripheral pre-treatment with TGF-ß1 dose-dependently exacerbated nociceptive behaviors evoked by intraplantar injection of acetic acid through TGF-ß receptor I in rats. These results suggested that TGF-ß1 potentiated ASIC-mediated electrophysiological activity and nociceptive behaviors, which revealed a novel mechanism underlying TGF-ß1 implicated in peripheral pain signaling by sensitizing ASICs.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Gânglios Espinais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
11.
Sensors (Basel) ; 18(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326578

RESUMO

A method is developed in this paper to calculate the spatial gain of a vertical line array when the plane-wave assumption is not applicable and when the oceanic ambient noise is correlated. The proposed optimal array gain (OAG), which can evaluate the array's performance and effectively guide its deployment, can be given by an equation in which the noise gain (NG) is subtracted from the signal gain (SG); hence, a high SG and a negative NG can enhance the performance of the array. OAGs and SGs with different array locations are simulated and analyzed based on the sound propagation properties of the direct-arrival zone (DAZ) and the reliable acoustic path (RAP) using ray theory. SG and NG are related to the correlation coefficients of the signals and noise, respectively, and the vertical correlation is determined by the structures of the multipath arrivals. The SG in the DAZ is always high because there is little difference between the multipath waves, while the SG in the RAP changes with the source-receiver range because of the variety of structure in the multiple arrivals. The SG under different conditions is simulated in this work. The "dual peak" structure can often be observed in the vertical directionality pattern of the noise because of the presence of bottom reflection and deep sound channel. When the directions of the signal and noise are close, the conventional beamformer will enhance the correlation of not only the signals but also the noise; thus, the directivity of the signals and noise are analyzed. Under the condition of having a typical sound speed profile, the OAG in some areas of the DAZ and RAP can achieve high values and even exceed the ideal gain of horizontal line array 10 logN dB, while, in some other areas, it will be lowered because of the influence of the NG. The proposed method of gain analysis can provide analysis methods for vertical arrays in the deep ocean under many conditions with references. The theory and simulation are tested by experimental data.

12.
J Neuroinflammation ; 14(1): 150, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754162

RESUMO

BACKGROUND: Tissue acidosis and inflammatory mediators play critical roles in pain. Pro-inflammatory agents trypsin and tryptase cleave and activate proteinase-activated receptor 2 (PAR2) expressed on sensory nerves, which is involved in peripheral mechanisms of inflammation and pain. Extracellular acidosis activates acid-sensing ion channel 3 (ASIC3) to trigger pain sensation. Here, we show that a functional interaction of PAR2 and ASIC3 could contribute to acidosis-induced nociception. METHODS: Electrophysiological experiments were performed on both rat DRG neurons and Chinese hamster ovary (CHO) cells expressing ASIC3 and PAR2. Nociceptive behavior was induced by acetic acid in rats. RESULTS: PAR2-AP, PAR2-activating peptide, concentration-dependently increased the ASIC3 currents in CHO cells transfected with ASIC3 and PAR2. The proton concentration-response relationship was not changed, but that the maximal response increased 58.7 ± 3.8% after pretreatment of PAR2-AP. PAR2 mediated the potentiation of ASIC3 currents via an intracellular cascade. PAR2-AP potentiation of ASIC3 currents disappeared after inhibition of intracellular G protein, PLC, PKC, or PKA signaling. Moreover, PAR2 activation increased proton-evoked currents and spikes mediated by ASIC3 in rat dorsal root ganglion neurons. Finally, peripheral administration of PAR2-AP dose-dependently exacerbated acidosis-induced nocifensive behaviors in rats. CONCLUSIONS: These results indicated that PAR2 signaling sensitized ASIC3, which may contribute to acidosis-induced nociception. These represent a novel peripheral mechanism underlying PAR2 involvement in hyperalgesia by sensitizing ASIC3 in primary sensory neurons.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Acidose/complicações , Nociceptividade/fisiologia , Dor/induzido quimicamente , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Células CHO , Células Cultivadas , Cricetulus , Modelos Animais de Doenças , Gânglios Espinais/citologia , Concentração de Íons de Hidrogênio , Masculino , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Oligopeptídeos/farmacologia , Técnicas de Patch-Clamp , Ratos , Receptor PAR-2/genética , Transdução de Sinais/efeitos dos fármacos
13.
Pharmacol Res ; 107: 19-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26946972

RESUMO

Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCß, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Gânglios Espinais/fisiologia , Neurônios/fisiologia , Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Ácido Acético , Acidose/complicações , Acidose/fisiopatologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Neurônios/efeitos dos fármacos , Dor/induzido quimicamente , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tetrodotoxina/farmacologia
14.
Purinergic Signal ; 12(1): 69-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26538146

RESUMO

Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Uridina Trifosfato/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Acidose/fisiopatologia , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Prótons , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Uridina Trifosfato/antagonistas & inibidores
15.
J Neurosci Res ; 93(2): 333-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395088

RESUMO

Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Alcaloides de Berberina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Concentração de Íons de Hidrogênio , Masculino , Potenciais da Membrana/efeitos dos fármacos , Dor/induzido quimicamente , Dor/prevenção & controle , Medição da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Prótons/efeitos adversos , Ratos , Ratos Sprague-Dawley
16.
Mol Neurobiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046700

RESUMO

Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-ß-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.

17.
Sci Rep ; 14(1): 18077, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103432

RESUMO

Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Gânglios Espinais , Insulina , Receptor de Insulina , Células Receptoras Sensoriais , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Insulina/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/citologia , Ratos , Receptor de Insulina/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Ratos Sprague-Dawley , Hiperalgesia/metabolismo , Células Cultivadas
18.
Front Synaptic Neurosci ; 15: 1191383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216004

RESUMO

Introduction: Cancer patients treated with paclitaxel often develop chemotherapy-induced peripheral neuropathy, which has not been effectively treated with drugs. The anti-diabetic drug metformin is effective in the treatment of neuropathic pain. The aim of this study was to elucidate effect of metformin on paclitaxel-induced neuropathic pain and spinal synaptic transmission. Methods: Electrophysiological experiments on rat spinal slices were performed in vitro and mechanical allodynia quantified in vitro. Results: The present data demonstrated that intraperitoneal injection of paclitaxel produced mechanical allodynia and potentiated spinal synaptic transmission. Intrathecal injection of metformin significantly reversed the established mechanical allodynia induced by paclitaxel in rats. Either spinal or systemic administration of metformin significantly inhibited the increased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation of metformin also reduced the frequency rather than the amplitude of sEPSCs in the spinal slices from paclitaxel-treated rats. Discussion: These results suggested that metformin was able to depress the potentiated spinal synaptic transmission, which may contribute to alleviating the paclitaxel-induced neuropathic pain.

19.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820935

RESUMO

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Sincalida , Ratos , Animais , Ratos Sprague-Dawley , Sincalida/farmacologia , Sincalida/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Células Receptoras Sensoriais , Dor/metabolismo , Gânglios Espinais/metabolismo
20.
Neuropharmacology ; 227: 109443, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709909

RESUMO

P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,ß-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,ß-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,ß-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Receptores de Glutamato Metabotrópico , Ratos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Gânglios Espinais/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Dor/metabolismo , Neurônios , Trifosfato de Adenosina/metabolismo , Analgésicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA