Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931630

RESUMO

Modal parameter estimation is crucial in vibration-based damage detection and deserves increased attention and investigation. Concrete arch dams are prone to damage during severe seismic events, leading to alterations in their structural dynamic characteristics and modal parameters, which exhibit specific time-varying properties. This highlights the significance of investigating the evolution of their modal parameters and ensuring their accurate identification. To effectively accomplish the recursive estimation of modal parameters for arch dams, an adaptive recursive subspace (ARS) method with variable forgetting factors was proposed in this study. In the ARS method, the variable forgetting factors were adaptively updated by assessing the change rate of the spatial Euclidean distance of adjacent modal frequency identification values. A numerical simulation of a concrete arch dam under seismic loading was conducted by using ABAQUS software, in which a concrete damaged plasticity (CDP) model was used to simulate the dam body's constitutive relation, allowing for the assessment of damage development under seismic loading. Utilizing the dynamic responses obtained from the numerical simulation, the ARS method was implemented for the modal parameter recursive estimation of the arch dam. The identification results revealed a decreasing trend in the frequencies of the four initial modes of the arch dam: from an undamaged state characterized by frequencies of 0.910, 1.166, 1.871, and 2.161 Hz to values of 0.895, 1.134, 1.842, and 2.134 Hz, respectively. Concurrently, increases in the damping ratios of these modes were observed, transitioning from 4.44%, 4.28%, 5.42%, and 5.56% to 4.98%, 4.91%, 6.61%, and 6.85%%, respectively. The correlation of the identification results with damage progression validated the effectiveness of the ARS method. This study's outcomes have substantial theoretical and practical importance, facilitating the immediate comprehension of the dynamic characteristics and operational states of concrete arch dam structures.

2.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475137

RESUMO

Investigating the dynamic response patterns and failure modes of concrete gravity dams subjected to strong earthquakes is a pivotal area of research for addressing seismic safety concerns associated with gravity dam structures. Dynamic shaking table testing has proven to be a robust methodology for exploring the dynamic characteristics and failure modes of gravity dams. This paper details the dynamic test conducted on a gravity dam model on a shaking table. The emulation concrete material, featuring high density, low dynamic elastic modulus, and appropriate strength, was meticulously designed and fabricated. Integrating the shaking table conditions with the model material, a comprehensive gravity dam shaking table model test was devised to capture the dynamic response of the model under various dynamic loads. Multiple operational conditions were carefully selected for in-depth analysis. Leveraging the dynamic strain responses, the progression of damage in the gravity dam model under these diverse conditions was thoroughly examined. Subsequently, the recorded acceleration responses were utilized for identifying dynamic characteristic parameters, including the acceleration amplification factor in the time domain, acceleration response spectrum characteristics in the frequency domain, and modal parameters reflecting the inherent characteristics of the structure. To gain a comprehensive understanding, a comparative analysis was performed by aligning the observed damage development with the identified dynamic characteristic parameters, and the sensitivity of these identified parameters to different levels of damage was discussed. The findings of this study not only offer valuable insights for conducting and scrutinizing shaking table experiments on gravity dams but also serve as crucial supporting material for identifying structural dynamic characteristic parameters and validating damage diagnosis methods for gravity dam structures.

3.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897612

RESUMO

: In this paper, the effects of dry density, w/c ratio, and municipal solid waste incineration (MSWI) powder on the multi-scale properties and internal pore structure of foamed concrete were studied by using a single-factor controlled experiment. It was found that an increase in the dry density of foamed concrete could effectively reduce the porosity, leading to the improvement of compressive strength and impermeability and to the reduction of water absorption. The compressive strength, water absorption, and impermeability were mainly affected by the porosity when the w/c ratio changed. With the increase in porosity, the water absorption rate increased, and the compressive strength and impermeability decreased. The addition of MSWI powder caused no obvious change in the overall pore size distribution of the foamed concrete, and there was no significant change in the water absorption and impermeability of the structure. However, because the hydration activity of MSWI powder was lower than that of ordinary Portland cement, the compressive strength of foamed concrete decreased with the increase in MSWI powder.

4.
Heliyon ; 8(8): e10046, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991991

RESUMO

The sensitivity analysis model is widely used to describe the impacts of condition parameters on structural reliability. However, the classical sensitivity analysis model is limited to the small number of influence parameters and has no high prediction accuracy. Integrating the response surface function - Kriging model with Sobol sensitivity algorithm, a revised sensitivity model is proposed in this paper. And the quantitative sensitivity analysis for the influence of condition parameters on structural reliability are achieved through combining the revised sensitivity model with the experimental design of coupling parameters, range verification, the multi-body dynamics analysis and the structural statics analysis. The proposed analysis model is mainly applied in large structures with multiple influence parameters. Finally, a typical port crane is adopted to verify the accuracy and effectiveness of the proposed model. The results reveal that among the multiple parameters, the biggest sensitivity influence is the trolley position, while the least one is the lifting speed. The average prediction accuracy of the quantitative structural reliability index for the influencing parameters is up to 95.91%. The revised sensitivity model enables the accurate assessment of structural relativity with plenty of coupling condition parameters.

5.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955289

RESUMO

In this paper, the strength characteristics and erosion resistance of solid waste incineration (MSWI) powder were studied. Firstly, the optimum process for the preparation of regenerated powder from MSWI bottom slag by ball milling was determined as follows: rotational speed 350 r/min, time 45 min. The strength activity index of regenerated powder reached the maximum when the substitute content of powder was 30%. Secondly, the semi-erosion method was used to study the strength variation rule of mortar with different content of MSWI powder in semi-immersion of salt solution. It was found that the higher the content of MSWI powder, the greater the anti-erosion coefficient of mortar specimen. Finally, the capillary rise test, crystallization test and capillary pore water absorption test were used to study the total porosity, coarse capillary-pore porosity and fine-capillary pore porosity of concrete containing MSWI powder. The results showed that, with the increase in MSWI powder content, the above pore structure properties were improved. The results revealed the transport and crystallization process of salt solution in concrete mixed with MSWI powder and the mechanism of corrosion resistance.

6.
Materials (Basel) ; 15(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013934

RESUMO

The effects of metakaolin powder (MP) on the microscopic rheological properties and macroscopic flow parameters of cementitious suspension under various water-cement ratios were investigated. By analyzing the changes in the bonding strength coefficient and water film thickness (WFT), the mechanism of MP on flow and rheological parameters can be explored. Further, the effect of MP on mechanical properties was explained from the perspective of water absorption kinetics and hydration activity contribution rate. The incorporation of MP can reduce the flow rate and flow spread and increase the compressive strength, plastic viscosity, yield stress and thixotropy, and the effects of MP were distinctive under various W/CM ratios. The bonding strength coefficient and WFT increased and decreased with increasing MP replacement content, respectively. The regression analysis results revealed that the bonding strength coefficient and WFT were the most important factors influencing the macroscopic flow parameters and rheological parameters, which indicated that MP influenced the rheology and flowability of cementitious suspension by affecting the flocculent structure and particle distance. Compared with WFT, the bonding strength coefficient had a stronger effect on these parameters. The MP improved the compressive strength by reducing the average pore size and porosity and increasing the pore uniformity and hydration activity contribution rate of hardened paste, and this improvement was enhanced by increasing curing age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA