Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioinformatics ; 37(20): 3686-3687, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33848326

RESUMO

SUMMARY: Sequence Processing and Data Extraction (SPDE) has eight modules comprising 100 basic functions ranging from sequence extraction, format conversion to data reorganization and mining, and all of these functions can be completed by point-and-click icons. SPDE also incorporates eight public analyses tools; thus, SPDE is a comprehensive bioinformatics platform for big biological data analysis. AVAILABILITY AND IMPLEMENTATION: SPDE built by Python can run on 32-bit, 64-bit Windows and MacOS systems. It can be downloaded from https://github.com/simon19891216/SPDEv1.2.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Ecotoxicol Environ Saf ; 230: 113149, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974361

RESUMO

Sedum plumbizincicola, a cadmium (Cd) hyperaccumulating herbaceous plant, can accumulate large amounts of Cd in the above-ground tissues without being poisoned. However, the molecular mechanisms regulating the processes are not fully understood. In this study, Transcriptional and proteomic analyses were integrated to investigate the response of S. plumbizincicola plants to Cd stress and to identify key pathways that are potentially responsible for Cd tolerance and accumulation. A total of 630 DAPs (differentially abundant proteins, using fold change >1.5 and adjusted p-value <0.05) were identified from Tandem Mass Tag (TMT)- based quantitative proteomic profiling, which were enriched in processes including phenylpropanoid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of secondary metabolites. Combined with the previous transcriptomic study, 209 genes and their corresponding proteins showed the identical expression pattern. The identified genes/proteins revealed the potential roles of several metabolism pathways, including phenylpropanoid biosynthesis, oxidative phosphorylation, phagosome, and glutathione metabolism, in mediating Cd tolerance and accumulation. Lignin staining and Cd accumulation assay of the transgenic lines over-expressing a selected Cd up-regulated gene SpFAOMT (Flavonoid 3',5'-methyltransferase) showed its functions in adapting to Cd stress, and provided insight into its role in lignin biosynthesis and Cd accumulation in S. plumbizincicola during Cd stress.

3.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457281

RESUMO

In nature, heavy metal (HM) stress is one of the most destructive abiotic stresses for plants. Heavy metals produce toxicity by targeting key molecules and important processes in plant cells. The mitogen-activated protein kinase (MAPK) cascade transfers the signals perceived by cell membrane surface receptors to cells through phosphorylation and dephosphorylation and targets various effector proteins or transcriptional factors so as to result in the stress response. Signal molecules such as plant hormones, reactive oxygen species (ROS), and nitric oxide (NO) can activate the MAPK cascade through differentially expressed genes, the activation of the antioxidant system and synergistic crosstalk between different signal molecules in order to regulate plant responses to HMs. Transcriptional factors, located downstream of MAPK, are key factors in regulating plant responses to heavy metals and improving plant heavy metal tolerance and accumulation. Thus, understanding how HMs activate the expression of the genes related to the MAPK cascade pathway and then phosphorylate those transcriptional factors may allow us to develop a regulation network to increase our knowledge of HMs tolerance and accumulation. This review highlighted MAPK pathway activation and responses under HMs and mainly focused on the specificity of MAPK activation mediated by ROS, NO and plant hormones. Here, we also described the signaling pathways and their interactions under heavy metal stresses. Moreover, the process of MAPK phosphorylation and the response of downstream transcriptional factors exhibited the importance of regulating targets. It was conducive to analyzing the molecular mechanisms underlying heavy metal accumulation and tolerance.


Assuntos
Metais Pesados , Proteínas Quinases Ativadas por Mitógeno , Plantas , Fatores de Transcrição , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525549

RESUMO

Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.


Assuntos
Aminoácido Oxirredutases/genética , Ácidos Indolacéticos/farmacologia , Sedum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Sedum/genética , Sedum/metabolismo , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365876

RESUMO

SaNramp6 in Sedum alfredii encodes a membrane-localized metal transporter. We isolated the SaNramp6h allele from the hyperaccumulating ecotype (HE) of S. alfredii. When this allele was expressed in transgenic yeast and Arabidopsis thaliana, it enhanced their cadmium (Cd) sensitivity by increased Cd transport and accumulation. We isolated another allele, SaNramp6n, from a nonhyperaccumulating ecotype (NHE) of S. alfredii. Amino acid sequence comparisons revealed three amino acid differences between SaNramp6h and SaNramp6n. We investigated the Cd transport activity of the Nramp6 allele, and determined which residues are essential for the transport activity. We conducted structure-function analyses of SaNramp6 based on site-directed mutagenesis and functional assays of the mutants in yeast and Arabidopsis. The three residues that differed between SaNramp6h and SaNramp6n were mutated. Only the L157P mutation of SaNramp6h impaired Cd transport. The other mutations, S218N and T504A, did not affect the transport activity of SaNramp6h, indicating that these residues are not essential for metal selectivity. Transgenic plants overexpressing SaNramp6hL157P showed altered metal accumulation in shoots and roots. Our results suggest that the conserved site L157 is essential for the high metal transport activity of SaNramp6h. This information may be useful for limiting or increasing Cd transport by other plant natural resistance associated macrophage protein (NRAMP) proteins.


Assuntos
Substituição de Aminoácidos , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Mutação Puntual , Sedum/genética , Sedum/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Fenótipo , Poluentes do Solo/metabolismo
6.
Environ Sci Technol ; 53(18): 10926-10940, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31449747

RESUMO

Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.


Assuntos
Sedum , Cádmio , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Mineração , Raízes de Plantas
7.
Plant Cell Physiol ; 58(5): 885-892, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28371895

RESUMO

During phosphate (Pi) starvation or leaf senescence, the accumulation of intracellular and extracellular purple acid phosphatases (PAPs) increases in plants in order to scavenge organic phosphorus (P). In this study, we demonstrated that a PAP-encoding gene in rice, OsPAP26, is constitutively expressed in all tissues. While the abundance of OsPAP26 transcript is not affected by Pi supply, it is up-regulated during leaf senescence. Furthermore, Pi deprivation and leaf senescence greatly increased the abundance of OsPAP26 protein. Overexpression or RNA interference (RNAi) of OsPAP26 in transgenic rice significantly increased or reduced APase activities, respectively, in leaves, roots and growth medium. Compared with wild-type (WT) plants, Pi concentrations of OsPAP26-overexpressing plants increased in the non-senescing leaves and decreased in the senescing leaves. The increased remobilization of Pi from the senescing leaves to non-senescing leaves in the OsPAP26-overexpressing plants resulted in better growth performance when plants were grown in Pi-depleted condition. In contrast, OsPAP26-RNAi plants retained more Pi in the senescing leaves, and were more sensitive to Pi starvation stress. OsPAP26 was found to localize to the apoplast of rice cells. Western blot analysis of protein extracts from callus growth medium confirmed that OsPAP26 is a secreted PAP. OsPAP26-overexpressing plants were capable of converting more ATP into inorganic Pi in the growth medium, which further supported the potential role of OsPAP26 in utilizing organic P in the rhizosphere. In summary, we concluded that OsPAP26 performs dual functions in plants: Pi remobilization from senescing to non-senescing leaves; and organic P utilization.


Assuntos
Fosfatase Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fosfatase Ácida/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glicoproteínas/genética , Oryza/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
8.
Plant Cell Environ ; 39(10): 2247-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411391

RESUMO

Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice.


Assuntos
Fosfatase Ácida/fisiologia , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/fisiologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Fósforo/farmacologia , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/metabolismo
9.
J Hazard Mater ; 480: 135936, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321478

RESUMO

Cadmium (Cd) is a prominent heavy metal pollutant that inhibits plant growth and poses risks to human health. Sedum plumbizincicola, as a Cd/Zn/Pb hyperaccumulator species, exhibits robust resistance to heavy metals and effective enrichment capacities. In our previous study, overexpressing SpbZIP60 in Arabidopsis enhanced Cd tolerance; however, the underlying the molecular mechanism remains to be elucidated. Here, we identified SpbZIP60 as a representative Cd stress response factor with nuclear localization and transcriptional activation activity. SpbZIP60 underwent conservative splicing in response to endoplasmic reticulum (ER) stress, while its response to Cd stress is independent of the ER stress-mediated unfolded protein response pathway. Overexpression of SpbZIP60 in S. alfredii increased the Cd tolerance and antioxidant activity. Furthermore, SpbZIP60 increased the content of cell wall components and thickened cell wall under Cd stress. Transcriptome analysis indicated a significant enrichment of differentially expressed genes within the phenylpropanoid metabolism pathway. Besides, the binding of SpbZIP60 to the promoter region of SpBglu resulted in the activation of gene expression, thereby enhancing the process of lignin deposition. Collectively, our results elucidated a molecular regulatory model in which SpbZIP60 increased the thickness of the root cell wall to impede Cd entry into the cell, consequently improving Cd tolerance.

10.
Front Plant Sci ; 15: 1382121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045590

RESUMO

Sedum plumbizincicola is a renowned hyperaccumulator of cadmium (Cd), possesses significant potential for eco-friendly phytoremediation of soil contaminated with Cd. Nevertheless, comprehension of the mechanisms underpinning its Cd stress response remains constrained, primarily due to the absence of a comprehensive genome sequence and an established genetic transformation system. In this study, we successfully identified a novel protein that specifically responds to Cd stress through early comparative iTRAQ proteome and transcriptome analyses under Cd stress conditions. To further investigate its structure, we employed AlphaFold, a powerful tool for protein structure prediction, and found that this newly identified protein shares a similar structure with Arabidopsis AtSIZ1. Therefore, we named it Sedum plumbizincicola SIZ1 (SpSIZ1). Our study revealed that SpSIZ1 plays a crucial role in positively regulating Cd tolerance through its coordination with SpABI5. Overexpression of SpSIZ1 significantly enhanced plant resistance to Cd stress and reduced Cd accumulation. Expression pattern analysis revealed higher levels of SpSIZ1 expression in roots compared to stems and leaves, with up-regulation under Cd stress induction. Importantly, overexpressing SpSIZ1 resulted in lower Cd translocation factors (Tfs) but maintained relatively constant Cd levels in roots under Cd stress, leading to enhanced Cd stress resistance in plants. Protein interaction analysis revealed that SpSIZ1 interacts with SpABI5, and the expression of genes responsive to abscisic acid (ABA) through SpABI5-dependent signaling was significantly up-regulated in SpSIZ1-overexpressing plants with Cd stress treatment. Collectively, our results illustrate that SpSIZ1 interacts with SpABI5, enhancing the expression of ABA downstream stress-related genes through SpABI5, thereby increasing Cd tolerance in plants.

11.
PeerJ ; 12: e17410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818458

RESUMO

The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cádmio , Regulação da Expressão Gênica de Plantas , Populus , Estresse Fisiológico , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Genoma de Planta , Regiões Promotoras Genéticas/genética
12.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739960

RESUMO

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Assuntos
Biodegradação Ambiental , Cádmio , Proteínas de Plantas , Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
13.
Front Plant Sci ; 14: 1111789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844053

RESUMO

A cadmium (Cd) tolerance protein (SpCTP3) involved in the Sedum plumbizincicola response to Cd stress was identified. However, the mechanism underlying the Cd detoxification and accumulation mediated by SpCTP3 in plants remains unclear. We compared wild-type (WT) and SpCTP3-overexpressing transgenic poplars in terms of Cd accumulation, physiological indices, and the expression profiles of transporter genes following with 100 µmol/L CdCl2. Compared with the WT, significantly more Cd accumulated in the above-ground and below-ground parts of the SpCTP3-overexpressing lines after 100 µmol/L CdCl2 treatment. The Cd flow rate was significantly higher in the transgenic roots than in the WT roots. The overexpression of SpCTP3 resulted in the subcellular redistribution of Cd, with decreased and increased Cd proportions in the cell wall and the soluble fraction, respectively, in the roots and leaves. Additionally, the accumulation of Cd increased the reactive oxygen species (ROS) content. The activities of three antioxidant enzymes (peroxidase, catalase, and superoxide dismutase) increased significantly in response to Cd stress. The observed increase in the titratable acid content in the cytoplasm might lead to the enhanced chelation of Cd. The genes encoding several transporters related to Cd2+ transport and detoxification were expressed at higher levels in the transgenic poplars than in the WT plants. Our results suggest that overexpressing SpCTP3 in transgenic poplar plants promotes Cd accumulation, modulates Cd distribution and ROS homeostasis, and decreases Cd toxicity via organic acids. In conclusion, genetically modifying plants to overexpress SpCTP3 may be a viable strategy for improving the phytoremediation of Cd-polluted soil.

14.
Plant Physiol Biochem ; 202: 107954, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573795

RESUMO

Aldehyde dehydrogenase (ALDH) superfamily, comprising enzymes dependent on NAD+ or NADP+, plays an important role in controlling plant growth and development, as well as in responsing to phytohormone and environmental stress. These enzymes possess the ability to prevent toxic effects of aldehydes by converting them into their corresponding carboxylic acids. However, the potential function of ALDH genes in moso bamboo (Phyllostachys edulis) remains largely unknown. In this study, the ALDH gene superfamily in moso bamboo was analyzed through genome-wide screening, the evolutionary relationship of expansion genes was conducted. Tissue-specific expression patterns of ALDH genes were observed in 26 different tissues. Plant hormone and environmental stress responsive cis-elements were identified in the promoter of ALDH genes, which were supported by public databases data on the expression patterns under various abiotic stresses and hormone treatments. ALDH activity was increased in moso bamboo seedlings exposed to drought, compared to control condition. Furthermore, PeALDH2B2 was found to physically interact with PeGPB1 in response to drought. Overall, the study provides a comprehensive analysis of the ALDH family in moso bamboo and contributes to our understanding of the function of ALDH genes in growth, development, and adaptation to drought stresses.


Assuntos
Aldeído Desidrogenase , Secas , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Poaceae/genética , Poaceae/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plants (Basel) ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050103

RESUMO

Heavy-metal ATPase (HMA), an ancient family of transition metal pumps, plays important roles in the transmembrane transport of transition metals such as Cu, Zn, Cd, and Co. Although characterization of HMAs has been conducted in several plants, scarcely knowledge was revealed in Sedum plumbizincicola, a type of cadmium (Cd) hyperaccumulator found in Zhejiang, China. In this study, we first carried out research on genome-wide analysis of the HMA gene family in S. plumbizincicola and finally identified 8 SpHMA genes and divided them into two subfamilies according to sequence alignment and phylogenetic analysis. In addition, a structural analysis showed that SpHMAs were relatively conserved during evolution. All of the SpHMAs contained the HMA domain and the highly conserved motifs, such as DKTGT, GDGxNDxP, PxxK S/TGE, HP, and CPx/SPC. A promoter analysis showed that the majority of the SpHMA genes had cis-acting elements related to the abiotic stress response. The expression profiles showed that most SpHMAs exhibited tissue expression specificity and their expression can be regulated by different heavy metal stress. The members of Zn/Co/Cd/Pb subgroup (SpHMA1-3) were verified to be upregulated in various tissues when exposed to CdCl2. Here we also found that the expression of SpHMA7, which belonged to the Cu/Ag subgroup, had an upregulated trend in Cd stress. Overexpression of SpHMA7 in transgenic yeast indicated an improved sensitivity to Cd. These results provide insights into the evolutionary processes and potential functions of the HMA gene family in S. plumbizincicola, laying a theoretical basis for further studies on figuring out their roles in regulating plant responses to biotic/abiotic stresses.

16.
Plants (Basel) ; 11(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567274

RESUMO

Auxin response factors (ARFs) play important roles in plant development and environmental adaption. However, the function of ARFs in cadmium (Cd) accumulation are still unknown. Here, 23 SaARFs were detected in the genome of hyperaccumulating ecotype of Sedum alfredii Hance (HE), and they were not evenly distributed on the chromosomes. Their protein domains remained highly conservative. SaARFs in the phylogenetic tree can be divided into three groups. Genes in the group Ⅰ contained three introns at most. However, over ten introns were found in other two groups. Collinearity relationships were exhibited among ten SaARFs. The reasons for generating SaARFs may be segmental duplication and rearrangements. Collinearity analysis among different species revealed that more collinear genes of SaARFs can be found in the species with close relationships of HE. A total of eight elements in SaARFs promoters were related with abiotic stress. The qRT-PCR results indicated that four SaARFs can respond to Cd stress. Moreover, that there may be functional redundancy among six SaARFs. The adaptive selection and functional divergence analysis indicated that SaARF4 may undergo positive selection pressure and an adaptive-evolution process. Overexpressing SaARF4 effectively declined Cd accumulation. Eleven single nucleotide polymorphism (SNP) sites relevant to Cd accumulation can be detected in SaARF4. Among them, only one SNP site can alter the sequence of the SaARF4 protein, but the SaARF4 mutant of this site did not cause a significant difference in cadmium content, compared with wild-type plants. SaARFs may be involved in Cd-stress responses, and SaARF4 may be applied for decreasing Cd accumulation of plants.

17.
Front Plant Sci ; 13: 859386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574076

RESUMO

Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb) hyperaccumulator native to Southeast China, is potentially useful for the phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP) transcription factors play vital roles in plant growth, development, and abiotic stress responses. However, there has been minimal research on the effects of Cd stress on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were identified in the S. plumbizincicola genome and then classified into 12 subgroups according to their similarity to bZIP genes in Arabidopsis. Gene structure and conserved motif analyses showed that SpbZIP genes within the same subgroup shared similar intron-exon structures and motif compositions. In total, eight pairs of segmentally duplicated SpbZIP genes were identified, but there were no tandemly duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive, and plant development-related cis-acting elements were detected in the SpbZIP promoter sequences. Expression profiles derived from RNA-seq and quantitative real-time PCR analyses indicated that the expression levels of most SpbZIP genes were upregulated under Cd stress conditions. Furthermore, a gene co-expression network analysis revealed that most edge genes regulated by hub genes were related to metal transport, responses to stimuli, and transcriptional regulation. Because its expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was selected for a functional characterization to elucidate its role in the root response to Cd stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves, SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation, protecting the photosynthetic apparatus, and decreasing the Cd content. These findings may provide insights into the potential roles of the bZIP family genes during the S. plumbizincicola response to Cd stress.

18.
Chemosphere ; 287(Pt 3): 132302, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563781

RESUMO

Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mechanism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Proteínas de Membrana Transportadoras , Proteoma , Sedum/metabolismo , Poluentes do Solo/análise
19.
Sci Rep ; 11(1): 3023, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542339

RESUMO

The F-box genes, which form one of the largest gene families in plants, are vital for plant growth, development and stress response. However, F-box gene family in Sedum alfredii remains unknown. Comprehensive studies addressing their function responding to cadmium stress is still limited. In the present study, 193 members of the F-box gene (SaFbox) family were identified, which were classified into nine subfamilies. Most of the SaFboxs had highly conserved domain and motif. Various functionally related cis-elements involved in plant growth regulation, stress and hormone responses were located in the upstream regions of SaFbox genes. RNA-sequencing and co-expression network analysis revealed that the identified SaFbox genes would be involved in Cd stress. Expression analysis of 16 hub genes confirmed their transcription level in different tissues. Four hub genes (SaFbox40, SaFbox51, SaFbox136 and SaFbox170) were heterologously expressed in a Cd-sensitive yeast cell to assess their effects on Cd tolerance. The transgenic yeast cells carrying SaFbox40, SaFbox51, SaFbox136, or SaFbox170 were more sensitive and accumulated more cadmium under Cd stress than empty vector transformed control cells. Our results performed a comprehensive analysis of Fboxs in S. alfredii and identified their potential roles in Cd stress response.


Assuntos
Proteínas F-Box/genética , Sedum/genética , Poluentes do Solo/toxicidade , Transcriptoma/genética , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/toxicidade , Proteínas F-Box/classificação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Sedum/efeitos dos fármacos , Sedum/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
20.
Sci Rep ; 10(1): 20928, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262396

RESUMO

Cd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adaptação Fisiológica , Cádmio/toxicidade , Proteínas de Plantas/metabolismo , Sedum/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Motivos de Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Sedum/efeitos dos fármacos , Sedum/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA