Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(39): eadh8060, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774016

RESUMO

Sodium metal batteries hold great promise for energy-dense and low-cost energy storage technology but are severely impeded by catastrophic dendrite issue. State-of-the-art strategies including sodiophilic seeding/hosting interphase design manifest great success on dendrite suppression, while neglecting unavoidable interphase-depleted Na+ before plating, which poses excessive Na use, sacrificed output voltage and ultimately reduced energy density. We here demonstrate that elaborate-designed fluorinated porous framework could simultaneously realize superior sodiophilicity yet negligible interphase-consumed Na+ for dendrite-free and durable Na batteries. As elucidated by physicochemical and theoretical characterizations, well-defined fluorinated edges on porous channels are responsible for both high affinities ensuring uniform deposition and low reactivity rendering superior Na+ utilization for plating. Accordingly, synergistic performance enhancement is achieved with stable 400 cycles and superior plateau to sloping capacity ratio in anode-free batteries. Proof-of-concept pouch cells deliver an energy density of 325 Watt-hours per kilogram and robust 300 cycles under anode-less condition, opening an avenue with great extendibility for the practical deployment of metal batteries.

2.
Nanomicro Lett ; 14(1): 91, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362824

RESUMO

Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage, while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix. Herein, face-to-face covalent bridging in-between the 2D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene, where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds, and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure. The face-to-face bridging of ultrathin SnS2 nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure, and impressive reversible capacity and rate capability for sodium-ion batteries, which rank among the top in records of the SnS2-based anodes. Present work thus provides an alternative of constructing heterostructures with planar interfaces for electrochemical energy storage and even beyond.

3.
Sci Adv ; 8(19): eabm7489, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544572

RESUMO

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm-2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm-2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.

4.
Adv Mater ; 34(19): e2201140, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244311

RESUMO

The semiconductor-liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser-generated carbon dots with phenolic hydroxyl groups (LGCDs-PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge-carrier kinetics, resulting in FeNiOOH-LGCDs-PHGs-MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm-2 @ 1.23 VRHE , and operational stability up to 120 h @ 1.23 VRHE . Further work exploring LGCDs-PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge-carrier kinetics and operational stability of semiconductor photoelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA