Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Cybern ; 112(1-2): 57-80, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651582

RESUMO

Temporally, precise correlations between simultaneously recorded neurons have been interpreted as signatures of cell assemblies, i.e., groups of neurons that form processing units. Evidence for this hypothesis was found on the level of pairwise correlations in simultaneous recordings of few neurons. Increasing the number of simultaneously recorded neurons increases the chances to detect cell assembly activity due to the larger sample size. Recent technological advances have enabled the recording of 100 or more neurons in parallel. However, these massively parallel spike train data require novel statistical tools to be analyzed for correlations, because they raise considerable combinatorial and multiple testing issues. Recently, various of such methods have started to develop. First approaches were based on population or pairwise measures of synchronization, and later led to methods for the detection of various types of higher-order synchronization and of spatio-temporal patterns. The latest techniques combine data mining with analysis of statistical significance. Here, we give a comparative overview of these methods, of their assumptions and of the types of correlations they can detect.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Humanos , Método de Monte Carlo
2.
J Neurosci ; 36(32): 8329-40, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511007

RESUMO

UNLABELLED: The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT: Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex.


Assuntos
Potenciais de Ação/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Amplitude de Movimento Articular/fisiologia , Animais , Condicionamento Operante , Eletrofisiologia , Feminino , Macaca mulatta , Masculino , Modelos Neurológicos , Tempo de Reação/fisiologia , Vibrissas/inervação
3.
Biosystems ; 185: 104022, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31449837

RESUMO

The Spike Pattern Detection and Evaluation (SPADE) analysis is a method to find reoccurring spike patterns in parallel spike train data, and to determine their statistical significance. Here we introduce an extension of the original statistical testing procedure which explicitly accounts for the temporal duration of the patterns. The extension improves the performance in the presence of patterns with different durations, as here demonstrated by application to various synthetic data. We further introduce an implementation of SPADE in form of a sub-module of the Python library Elephant (ELEctroPHysiological ANalysis Toolkit). The code is made publicly available on GitHub, together with detailed documentation, tutorials, and the results presented here.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Fenômenos Eletrofisiológicos/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Biologia Computacional/estatística & dados numéricos , Simulação por Computador , Humanos , Software , Fatores de Tempo
4.
Front Neuroinform ; 12: 90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618696

RESUMO

Computational neuroscience relies on simulations of neural network models to bridge the gap between the theory of neural networks and the experimentally observed activity dynamics in the brain. The rigorous validation of simulation results against reference data is thus an indispensable part of any simulation workflow. Moreover, the availability of different simulation environments and levels of model description require also validation of model implementations against each other to evaluate their equivalence. Despite rapid advances in the formalized description of models, data, and analysis workflows, there is no accepted consensus regarding the terminology and practical implementation of validation workflows in the context of neural simulations. This situation prevents the generic, unbiased comparison between published models, which is a key element of enhancing reproducibility of computational research in neuroscience. In this study, we argue for the establishment of standardized statistical test metrics that enable the quantitative validation of network models on the level of the population dynamics. Despite the importance of validating the elementary components of a simulation, such as single cell dynamics, building networks from validated building blocks does not entail the validity of the simulation on the network scale. Therefore, we introduce a corresponding set of validation tests and present an example workflow that practically demonstrates the iterative model validation of a spiking neural network model against its reproduction on the SpiNNaker neuromorphic hardware system. We formally implement the workflow using a generic Python library that we introduce for validation tests on neural network activity data. Together with the companion study (Trensch et al., 2018), the work presents a consistent definition, formalization, and implementation of the verification and validation process for neural network simulations.

5.
Front Comput Neurosci ; 11: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596729

RESUMO

Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA