Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Ther Med ; 21(1): 64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33365064

RESUMO

The dried roots or rhizomes of Salvia miltiorrhiza Bge are commonly used in Chinese medicine to promote blood circulation and regulate menstruation. Salvianic acid A and salvianolic acid B are the main active water-soluble compounds in Salvia miltiorrhiza solution. The present study investigated the protective effect of Salvia miltiorrhiza solution and its active compounds in H2O2-induced cell damage of the human ovarian granulosa tumor cell line (KGN) in vitro, as well as its underlying mechanism. Cell viability was detected using a Cell Counting Kit-8 assay. In addition, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and tumor necrosis factor-α (TNF-α) were measured. Western blotting was performed to detect the protein expression of cleaved caspase-3 and caspase-9. Furthermore, immunocytochemistry was used to detect the expression of TNF-α. It was demonstrated that Salvia miltiorrhiza solution, salvianic acid A and salvianolic acid B did not affect the viability of KGN cells. Additionally, salvianic acid A and salvianolic acid B significantly reduced the H2O2-induced increased MDA levels, and reversed the H2O2-induced suppression of SOD and GSH activities in KGN cells (P<0.05). Treatment with Salvia miltiorrhiza solution, salvianic acid A and salvianolic acid B significantly reduced the overexpression of cleaved caspase-3, cleaved caspase-9 and TNF-α compared with the H2O2-treated group (P<0.05). Therefore, the present results indicated that Salvia miltiorrhiza solution and its main water-soluble compounds, salvianic acid A and salvianolic acid B, ameliorated KGN cell damage induced by H2O2.

2.
Anal Methods ; 13(40): 4778-4784, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34569567

RESUMO

In this work, a simple and ultrasensitive colorimetric biosensor for detection of SURF1 gene fragments (Leigh syndrome) has been developed based on a dual DNA-induced cascade hybridization reaction. Firstly, a biotin labeled capture probe was immobilized on a streptavidin labeled 96-well transparent plate surface. Then the target SURF1 fragment and auxiliary probe S1 were added into the reaction system to form a "Y" structure with the capture probe. Furthermore, to achieve a highly efficient signal amplification strategy, digoxin labeled P1, P2, P3 and P4 probes were used to cause a dual DNA-induced cascade hybridization reaction on the "Y" structure of the 96-well plate surface. As a detection probe, the HRP anti-digoxin antibody was combined on the surface to produce a colorimetric response to the SURF1 fragment in the presence of TMB. Under the optimal conditions, the established method exhibited a wide linear range from 1.0 × 10-13 M to 1.0 × 10-8 M and a detection limit to SURF1 as low as 1.73 × 10-14 M. In addition, the strategy has been successfully applied to the detection of SURF1 in spiked human serum samples. Therefore, the established biosensor has potential application prospects in gene fragment analysis and early diagnosis of clinical diseases.


Assuntos
Técnicas Biossensoriais , Colorimetria , Proteínas de Membrana/análise , Proteínas Mitocondriais/análise , DNA/genética , Humanos , Hibridização de Ácido Nucleico , Estreptavidina
3.
Front Chem ; 9: 614154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681142

RESUMO

Fascaplysin is a natural marine product originating from sponges, attracting widespread attention due to its potential inhibitory activities against CDK4. However, its clinical application has been largely limited because of serious adverse effects caused by planar skeleton. To reduce the serious adverse effects, 18 tetrahydro-ß-carboline analogs (compounds 6a-i and 7a-i) were designed and synthesized via breaking the planarity of fascaplysin, and the biological activities of the synthesized compounds were evaluated by MTT assay and CDK4/CycD3 enzyme inhibition assay. The title compounds showed varying degrees of inhibitory activities, especially the cytotoxicity of compound 6c against HeLa cells (IC50 = 1.03 ± 0.19 µM) with quite weak cytotoxicity toward the normal cells WI-38 (IC50 = 311.51 ± 56.06 µM), and the kinase inhibition test indicated that compound 6c was a potential CDK4 inhibitor. In order to further compare the action mechanisms of planar and nonplanar molecules on CDK4, the studied complexes of CDK4 bound with fascaplysin and three representative compounds (compound 6a-c) with bioactivities gradient were constructed by molecular docking and further verified through molecular dynamic simulation, which identified the key residues contributing to the ligands' binding. By comparing the binding modes of the constructed systems, it could be found that the residues contributing significantly to compound 6c's binding were highly consistent with those contributing significantly to fascaplysin's binding. Through the design, synthesis of the nonplanar fascaplysin derivatives, and binding mechanism analysis, some valuable hints for the discovery of antitumor drug candidates could be provided.

4.
Sci Rep ; 10(1): 3660, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107447

RESUMO

Gestational Diabetes Mellitus (GDM), which is correlated with changes in the gut microbiota, is a risk factor for neonatal inborn errors of metabolism (IEMs). Maternal hyperglycemia exerts epigenetic effects on genes that encode IEM-associated enzymes, resulting in changes in the neonatal blood metabolome. However, the relationship between maternal gut microbiota and the neonatal blood metabolome remains poorly understood. This study aimed at understanding the connections between maternal gut microbiota and the neonatal blood metabolome in GDM. 1H-NMR-based untargeted metabolomics was performed on maternal fecal samples and targeted metabolomics on the matched neonatal dry blood spots from a cohort of 40 pregnant women, including 22 with GDM and 18 controls. Multi-omic association methods (including Co-Inertia Analysis and Procrustes Analysis) were applied to investigate the relationship between maternal fecal metabolome and the neonatal blood metabolome. Both maternal fecal metabolome and the matched neonatal blood metabolome could be separated along the vector of maternal hyperglycemia. A close relationship between the maternal and neonatal metabolomes was observed by multi-omic association approaches. Twelve out of thirty-two maternal fecal metabolites with altered abundances from 872 1H- NMR features (Bonferroni-adjusted P < 0.05) in women with GDM and the controls were identified, among which 8 metabolites contribute (P < 0.05 in a 999-step permutation test) to the close connection between maternal and the neonatal metabolomes in GDM. Four of these eight maternal fecal metabolites, including lysine, putrescine, guanidinoacetate, and hexadecanedioate, were negatively associated (Spearman rank correlation, coefficient value < -0.6, P < 0.05) with maternal hyperglycemia. Biotin metabolism was enriched (Bonferroni-adjusted P < 0.05 in the hypergeometric test) with the four-hyperglycemia associated fecal metabolites. The results of this study suggested that maternal fecal metabolites contribute to the connections between maternal fecal metabolome and the neonatal blood metabolome and may further affect the risk of IEMs.


Assuntos
Diabetes Insípido/metabolismo , Fezes , Metaboloma , Complicações na Gravidez/metabolismo , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez
5.
Ann Transl Med ; 8(6): 296, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355740

RESUMO

BACKGROUND: Gestational hypothyroidism (GHT) is a common pregnancy-related thyroid disfunction. The adverse outcomes by GHT has been increasingly recognized, leading to more public awareness of the disease. However, comprehensive understanding of the prognosis of GHT has not yet achieved. Metabolomics is a powerful tool in evaluation of disease outcomes, and cord blood represents an excellent candidate for the investigation of gestational outcomes. METHODS: In the present study, we performed 1H-NMR based metabolomics on cord blood of 18 pregnant women with GHT and 18 non hypothyroidism (NHT) control. RESULTS: The metabolomic profile of GHT was separated with the NHT control. A total of 8 metabolites with altered abundances were observed, among which Creatinine and O-Phosphocholine were elevated and the others were downregulated in GHT. Spearman rank correlation suggested that the eight differential metabolites were correlated with the GHT related thyroid hormones. Pathway analysis of the differential metabolites indicated that two metabolic pathways were significantly altered in GHT (adjusted P<0.05), including tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Enrichment analysis of the differential metabolites against disease-associated metabolite sets suggested that GHT was associated with disease risks of non-insulin dependent diabetes mellitus, isovaleric acidemia, and methylmalonic aciduria. CONCLUSIONS: The results of this study revealed GHT associated metabolic changes in cord blood, providing insights into the metabolic intermediates between GHT and its related disease risks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA