Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1184-1192, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021975

RESUMO

Autophagy plays a critical role in the physiology and pathophysiology of hepatocytes. High level of homocysteine (Hcy) promotes autophagy in hepatocytes, but the underlying mechanism is still unknown. Here, we investigate the relationship between Hcy-induced autophagy level and the expression of nuclear transcription factor EB (TFEB). The results show that Hcy-induced autophagy level is mediated by upregulation of TFEB. Silencing of TFEB decreases the level of autophagy-related protein LC3BII/I and increases p62 expression level in hepatocytes after exposure to Hcy. Moreover, the effect of Hcy on the expression of TFEB is regulated by hypomethylation of the TFEB promoter catalyzed by DNA methyltransferase 3b (DNMT3b). In summary, this study shows that Hcy can activate autophagy by inhibiting DNMT3b-mediated DNA methylation and upregulating TFEB expression. These findings provide another new mechanism for Hcy-induced autophagy in hepatocytes.


Assuntos
Autofagia , Metilação de DNA , Hepatócitos , Homocisteína , Autofagia/genética , DNA , Homocisteína/metabolismo , Homocisteína/farmacologia , Humanos , DNA Metiltransferase 3B
2.
J Pharm Anal ; 14(9): 100937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39345941

RESUMO

Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE -/-) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.

3.
Front Immunol ; 13: 916098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311763

RESUMO

Myasthenia gravis (MG) is characterized by autoimmune damage to the postsynaptic membrane of the neuromuscular junction (NMJ) with impaired postsynaptic acetylcholine receptor (AChR) aggregation. Low-density lipoprotein receptor-related protein 4 (LRP4) plays an important role in AChR aggregation at endplate membranes via the Agrin-LRP4-muscle-specific receptor tyrosine kinase (MuSK) cascade. Sorting nexin 17 (SNX17) regulates the degradation and recycling of various internalized membrane proteins. However, whether SNX17 regulates LRP4 remains unclear. Therefore, we examined the regulatory effects of SNX17 on LRP4 and its influence on AChR aggregation in MG. We selected C2C12 myotubes and induced LRP4 internalization via stimulation with anti-LRP4 antibody and confirmed intracellular interaction between SNX17 and LRP4. SNX17 knockdown and overexpression confirmed that SNX17 promoted MuSK phosphorylation and AChR aggregation by increasing cell surface LRP4 expression. By establishing experimental autoimmune MG (EAMG) mouse models, we identified that SNX17 upregulation improved fragmentation of the AChR structure at the NMJ and alleviated leg weakness in EAMG mice. Thus, these results reveal that SNX17 may be a novel target for future MG therapy.


Assuntos
Miastenia Gravis Autoimune Experimental , Receptores Colinérgicos , Animais , Camundongos , Acetilcolina , Proteínas Relacionadas a Receptor de LDL , Lipoproteínas LDL , Receptores Proteína Tirosina Quinases , Nexinas de Classificação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA