Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 31: 2405-2420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259102

RESUMO

Image inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e., larger than the image resolution. The receptive field refers to the set of input pixels that are path-connected to a neuron. For image inpainting task, however, the size of surrounding areas needed to repair different kinds of missing regions are different, and the very large receptive field is not always optimal, especially for the local structures and textures. In addition, a large receptive field tends to involve more undesired completion results, which will disturb the inpainting process. Based on these insights, we rethink the process of image inpainting from a different perspective of receptive field, and propose a novel three-stage inpainting framework with local and global refinement. Specifically, we first utilize an encoder-decoder network with skip connection to achieve coarse initial results. Then, we introduce a shallow deep model with small receptive field to conduct the local refinement, which can also weaken the influence of distant undesired completion results. Finally, we propose an attention-based encoder-decoder network with large receptive field to conduct the global refinement. Experimental results demonstrate that our method outperforms the state of the arts on three popular publicly available datasets for image inpainting. Our local and global refinement network can be directly inserted into the end of any existing networks to further improve their inpainting performance. Code is available at https://github.com/weizequan/LGNet.git.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Neurônios
2.
IEEE Trans Image Process ; 30: 5072-5084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33979286

RESUMO

We present a novel and efficient approach to estimate 6D object poses of known objects in complex scenes represented by point clouds. Our approach is based on the well-known point pair feature (PPF) matching, which utilizes self-similar point pairs to compute potential matches and thereby cast votes for the object pose by a voting scheme. The main contribution of this paper is to present an improved PPF-based recognition framework, especially a new center voting strategy based on the relative geometric relationship between the object center and point pair features. Using this geometric relationship, we first generate votes to object centers resulting in vote clusters near real object centers. Then we group and aggregate these votes to generate a set of pose hypotheses. Finally, a pose verification operator is performed to filter out false positives and predict appropriate 6D poses of the target object. Our approach is also suitable to solve the multi-instance and multi-object detection tasks. Extensive experiments on a variety of challenging benchmark datasets demonstrate that the proposed algorithm is discriminative and robust towards similar-looking distractors, sensor noise, and geometrically simple shapes. The advantage of our work is further verified by comparing to the state-of-the-art approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA