Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phys Chem Chem Phys ; 20(24): 16761-16769, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29882945

RESUMO

Adsorption of enzymes to nanoparticles and the mechanisms responsible for enzyme activity modulation of adsorbed enzymes are not well understood. In this work, gold nanoparticles were used for electrostatic adsorption of a plant-derived laccase. Adsorption constants were determined by four independent techniques: dynamic light scattering, electrophoretic light scattering, agarose gel electrophoresis and fluorescence quenching. Stable bionanoconjugates were formed with log K in the range 6.8-8.9. An increase in enzyme activity was detected, in particular at acidic and close to neutral pH values, a feature that expands the useful pH range of the enzyme. A model for the adsorption was developed, based on geometrical considerations and volume increase data from dynamic light scattering. This indicates that enzymes adsorbed to gold nanoparticles are ca. 9 times more active than the free enzyme.


Assuntos
Ouro/química , Lacase/química , Lacase/metabolismo , Nanopartículas Metálicas/química , Adsorção , Hidrazonas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Toxicodendron/enzimologia
2.
J Appl Toxicol ; 36(3): 361-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26212026

RESUMO

Superparamagnetic iron oxide nanoparticles (ION) have attracted great interest for use in several biomedical fields. In general, they are considered biocompatible, but little is known of their effects on the human nervous system. The main objective of this work was to evaluate the cytotoxicity of two ION (magnetite), coated with silica and oleic acid, previously determining the possible interference of the ION with the methodological procedures to assure the reliability of the results obtained. Human neuroblastoma SHSY5Y and glioblastoma A172 cells were exposed to different concentrations of ION (5-300 µg ml(-1)), prepared in complete and serum-free cell culture medium for three exposure times (3, 6 and 24 h). Cytotoxicity was evaluated by means of the MTT, neutral red uptake and alamar blue assays. Characterization of the main physical-chemical properties of the ION tested was also performed. Results demonstrated that both ION could significantly alter absorbance readings. To reduce these interferences, protocols were modified by introducing additional washing steps and cell-free systems. Significant decreases in cell viability were observed for both cell lines in specific conditions by all assays. In general, oleic acid-coated ION were less cytotoxic than silica-coated ION; besides, a serum-protective effect was observed for both ION studied and cell lines. These results contribute to increase the knowledge of the potential harmful effects of ION on the human nervous system. Understanding these effects is essential to establish satisfactory regulatory policies on the safe use of magnetite nanoparticles in biomedical applications.


Assuntos
Bioensaio , Nanopartículas de Magnetita/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanopartículas de Magnetita/química , Neuroglia/patologia , Neurônios/patologia , Ácido Oleico/química , Reprodutibilidade dos Testes , Medição de Risco , Dióxido de Silício/química , Espectrofotometria , Fatores de Tempo
3.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804636

RESUMO

In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.

4.
Nanotechnology ; 21(30): 305706, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20610872

RESUMO

Magnetic force microscopy (MFM) is a very powerful technique, which can potentially be used to detect and localize the magnetic fields arising from nanoscopic magnetic domains, such as magnetic nanoparticles. However, in order to achieve this, we must be able to use MFM to discriminate between magnetic forces arising from the magnetic nanoparticles and nonmagnetic forces from other particles and sample features. Unfortunately, MFM can show a significant response even for nonmagnetic nanoparticles, giving rise to potentially misleading results. The literature to date lacks evidence for MFM detection of magnetic nanoparticles with nonmagnetic nanoparticles as a control. In this work, we studied magnetite particles of two sizes and with a silica shell, and compared them to nonmagnetic metallic and silica nanoparticles. We found that even on conducting, grounded substrates, significant electrostatic interaction between atomic force microscopy probes and nanoparticles can be detected, causing nonmagnetic signals that might be mistaken for a true MFM response. Nevertheless, we show that MFM can be used to discriminate between magnetic and nonmagnetic nanoparticles by using an electromagnetic shielding technique or by analysis of the phase shift data. On the basis of our experimental evidence we propose a methodology that enables MFM to be reliably used to study unknown samples containing magnetic nanoparticles, and correctly interpret the data obtained.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32640533

RESUMO

BACKGROUND AND AIM: Monitoring bioelectric phase angle (PhA) provides important information on the health and the condition of the athlete. Together with the vector length, PhA constitutes the bioimpedance vector analysis (BIVA) patterns, and their joint interpretation exceeds the limits of the evaluation of the PhA alone. The present investigation aimed to monitor changes in the BIVA patterns during a training macrocycle in swimmers, trying to ascertain if these parameters are sensitive to training load changes across a 13-week training period. METHODS: Twelve national and international level swimmers (four females; eight males; 20.9 ± 1.9 years; with a competitive swimming background of 11.3 ± 1.8 years; undertaking 16-20 h of pool training and 4-5 h of dry-land training per week and 822.0 ± 59.0 International Swimming Federation (FINA) points) were evaluated for resistance (R) and reactance (Xc) using a single frequency phase sensitive bioimpedance device at the beginning of the macrocycle (M1), just before the beginning of the taper period (M2), and just before the main competition of the macrocycle (M3). At the three-time assessment points, swimmers also performed a 50 m all-out first stroke sprint with track start (T50 m) while time was recorded. RESULTS: The results of the Hotelling T2 test showed a significant vector displacement due to simultaneous R and Xc changes (p < 0.001), where shifting from top to bottom along the major axis of the R-Xc graph from M1 to M2 was observed. From M2 to M3, a vector displacement up and left along the minor axis of the tolerance ellipses resulted in an increase in PhA (p < 0.01). The results suggest a gain in fluid with a decrease in cellular density from M1 to M2 due to decrements in R and Xc. Nevertheless, the reduced training load characterizing taper seemed to allow for an increase in PhA and, most importantly, an increase of Xc, thus demonstrating improved cellular health and physical condition, which was concomitant with a significant increase in the T50 m performance (p < 0.01). CONCLUSIONS: PhA, obtained by bioelectrical R and Xc, can be useful in monitoring the condition of swimmers preparing for competition. Monitoring BIVA patterns allows for an ecological approach to the swimmers' health and condition assessment without resorting to equations to predict the related body composition variables.


Assuntos
Composição Corporal , Natação , Animais , Atletas , Vetores de Doenças , Impedância Elétrica , Feminino , Humanos , Masculino , Adulto Jovem
6.
Nanomaterials (Basel) ; 9(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781838

RESUMO

Progress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 107) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.

7.
Anal Bioanal Chem ; 391(3): 943-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18157524

RESUMO

The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle-based assays have been developed for specific detection of bioanalytes of clinical interest. Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functionalization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis. Figure Colorimetric DNA/RNA detection using salt induced aggregation of AuNP-DNA nanoprobes.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , RNA/análise , Técnicas Biossensoriais/instrumentação , Testes de Química Clínica/instrumentação , Testes de Química Clínica/métodos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Nanotecnologia/instrumentação , Sensibilidade e Especificidade , Propriedades de Superfície
8.
Sci Rep ; 7(1): 2480, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28559536

RESUMO

For analytical applications in portable sensors to be used in the point-of-need, low-cost SERS substrates using paper as a base, are an alternative. In this work, SERS substrates were produced on two different types of paper: a high porosity paper (Whatman no. 1); and a low porosity paper (commercially available office paper, Portucel Soporcel). Solutions containing spherical silver nanoparticles (AgNPs) and silver nanostars (AgNSs) were separately drop-casted on hydrophilic wells patterned on the papers. The porosity of the paper was found to play a determinant role on the AgNP and AgNS distribution along the paper fibres, with most of the nanoparticles being retained at the illuminated surface of the office paper substrate. The highest SERS enhancements were obtained for the office paper substrate, with deposited AgNSs. A limit of detection for rhodamine-6G as low as 11.4 ± 0.2 pg could be achieved, with an analytical enhancement factor of ≈107 for this specific analyte. The well patterning technique allowed good signal uniformity (RSD of 1.7%). Besides, these SERS substrates remained stable after 5 weeks of storage (RSD of 7.3%). Paper-induced aggregation of AgNPs was found to be a viable alternative to the classical salt-induced aggregation, to obtain a highly sensitive SERS substrates.

9.
Prog Mol Biol Transl Sci ; 104: 427-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22093226

RESUMO

The aim of this chapter is to provide an overview of the available and emerging molecular diagnostic methods that take advantage of the unique nanoscale properties of nanoparticles (NPs) to increase the sensitivity, detection capabilities, ease of operation, and portability of the biodetection assemblies. The focus will be on noble metal NPs, especially gold NPs, fluorescent NPs, especially quantum dots, and magnetic NPs, the three main players in the development of probes for biological sensing. The chapter is divided into four sections: a first section covering the unique physicochemical properties of NPs of relevance for their utilization in molecular diagnostics; the second section dedicated to applications of NPs in molecular diagnostics by nucleic acid detection; and the third section with major applications of NPs in the area of immunoassays. Finally, a concluding section highlights the most promising advances in the area and presents future perspectives.


Assuntos
Nanopartículas , Patologia Molecular/métodos , Animais , Ouro , Humanos , Imunoensaio , Ácidos Nucleicos/análise , Pontos Quânticos
10.
Dalton Trans ; 39(11): 2842-54, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20200711

RESUMO

This work reports a detailed investigation about the physicochemical properties of superparamagnetic gamma-Fe(2)O(3) nanomaterial synthesized by the co-precipitation method and coated with two silica shells, and its application as support for the immobilization of oxovanadium(IV) acetylacetonate ([VO(acac)(2)]). The influence of the silica coatings on the surface composition and physicochemical interactions of the core-shell nanocomposites is discussed based on the combination of several techniques: electron microscopy techniques (SEM and TEM with EDS), DLS, powder XRD, XPS, FTIR and magnetic characterization. The identity of the iron oxide, gamma-Fe(2)O(3), was confirmed by XPS, FTIR and by the Rietveld refinement of the PXRD pattern. The results obtained by electron microscopy techniques, XRD and magnetization indicated that the gamma-Fe(2)O(3) nanoparticles are superparamagnetic and present an average size of approximately 6.5 nm. The first silica coating leads to a core-shell nanomaterial with an average particle size of 21 nm and upon the second coating, the average size increases to 240 nm. Magnetic measurements revealed that the silica-coated nanomaterials maintain the superparamagnetic state at room temperature, although with an expected reduction of the magnetization saturation due to the increase of the silica shell thickness. Furthermore, a numerical fit of the temperature dependence of magnetization was performed to determine the core size distribution and the effect of the silica coatings on the dipolar magnetic interactions. [VO(acac)(2)] was covalently immobilized on the surface of the silica-coated magnetic nanoparticles functionalized with amine groups, as confirmed by chemical analysis and XPS. In a proof-of-principle experiment, we demonstrated the catalytic performance of the novel magnetic hybrid nanomaterial in the epoxidation of geraniol, which presented high selectivity towards the 2,3-epoxygeraniol product and easy recovery by magnetic separation.


Assuntos
Compostos Férricos/química , Magnetismo , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Dióxido de Silício/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Difração de Raios X
11.
Nanoscale ; 2(10): 2209-16, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20714654

RESUMO

A photocatalytic approach was used to synthesize triangular nanoplates in aqueous solution. The synthesis is based on the reduction of a gold salt using a tin(iv) porphyrin as photocatalyst, cetyltrimethylammonium bromide (CTAB) as a stabilizing agent, and triethanolamine (TEA) as the final electron donor. The average edge length of the triangular nanoplates can be easily changed in the range 45-250 nm by varying the concentration of photocatalyst, and fine-tuning of the average edge length is achieved by varying the concentration of CTAB. Study of the mechanism of formation of the nanoplates by UV-vis and by transmission electron microscopy (TEM) shows that there is a first stage where formation of 5 nm seeds takes place, further growth is probably by fusion and by direct reduction of gold onto the preformed nanoparticles. The nanoparticles formed during the photocatalytic reduction of the gold precursor show an irregular shape that evolves to regular triangular nanoplates after ripening in solution for 24 h.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Anisotropia , Condutividade Elétrica , Elétrons , Etanolaminas/química , Cinética , Teste de Materiais , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Espectrofotometria Ultravioleta/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA