Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Haematol ; 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815995

RESUMO

Thrombocytopenia 4 (THC4) is an autosomal-dominant thrombocytopenia caused by mutations in CYCS, the gene encoding cytochrome c (CYCS), a small haeme protein essential for electron transport in mitochondria and cell apoptosis. THC4 is considered an extremely rare condition since only a few patients have been reported so far. These subjects presented mild thrombocytopenia and no or mild bleeding tendency. In this study, we describe six Italian families with five different heterozygous missense CYCS variants: p.Gly42Ser and p.Tyr49His previously associated with THC4, and three novel variants (p.Ala52Thr, p.Arg92Gly, and p.Leu99Val), which have been classified as pathogenic by bioinformatics and segregation analyses. Moreover, we supported functional effects of p.Ala52Thr and p.Arg92Gly on oxidative growth and respiratory activity in a yeast model. The clinical characterization of the 22 affected individuals, the largest series of THC4 patients ever reported, showed that this disorder is characterized by mild-to-moderate thrombocytopenia, normal platelet size, and function, low risk of bleeding, and no additional clinical phenotypes associated with reduced platelet count. Finally, we describe a significant correlation between the region of CYCS affected by mutations and the extent of thrombocytopenia, which could reflect different degrees of impairment of CYCS functions caused by different pathogenetic variants.

2.
FASEB J ; 33(3): 3112-3128, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550356

RESUMO

The chondroitin sulfate proteoglycan 4 ( CSPG4) gene encodes a transmembrane proteoglycan (PG) constituting the largest and most structurally complex macromolecule of the human surfaceome. Its transcript shows an extensive evolutionary conservation and, due to the elaborated intracellular processing of the translated protein, it generates an array of glycoforms with the potential to exert variant-specific functions. CSPG4-mediated molecular events are articulated through the interaction with more than 40 putative ligands and the concurrent involvement of the ectodomain and cytoplasmic tail. Alternating inside-out and outside-in signal transductions may thereby be elicited through a tight functional connection of the PG with the cytoskeleton and its regulators. The potential of CSPG4 to influence both types of signaling mechanisms is also asserted by its lateral mobility along the plasma membrane and its intersection with microdomain-restricted internalization and endocytic trafficking. Owing to the multitude of molecular interplays that CSPG4 may engage, and thanks to a differential phosphorylation of its intracellular domain accounted by crosstalking signaling pathways, the PG stands out for its unique capability to affect numerous cellular phenomena, including those purporting pathologic conditions. We discuss here the progresses made in advancing our understanding about the structural-functional bases for the ability of CSPG4 to widely impact on cell behavior, such as to highlight how its multivalency may be exploited to interfere with disease progression.-Tamburini, E., Dallatomasina, A., Quartararo, J., Cortelazzi, B., Mangieri, D., Lazzaretti, M., Perris, R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality.


Assuntos
Antígenos/química , Proteoglicanas/química , Sequência de Aminoácidos , Animais , Antígenos/genética , Antígenos/metabolismo , Membrana Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Evolução Molecular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteoglicanas/genética , Proteoglicanas/metabolismo
3.
Nucleic Acids Res ; 39(13): 5499-512, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21421562

RESUMO

Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.


Assuntos
RNA Polimerase III/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica , Região 3'-Flanqueadora , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , RNA de Transferência/genética , Análise de Sequência de DNA
4.
JIMD Rep ; 20: 95-101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25638461

RESUMO

YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase that catalyzes the covalent binding of tyrosine to its cognate mt-tRNA. Mutations in YARS2 have been identified in patients with myopathy, lactic acidosis, and sideroblastic anemia type 2 (MLASA2). We report here on two siblings with a novel mutation and a review of literature. The older patient presented at 2 months with marked anemia and lactic acidemia. He required periodic blood transfusions until 14 months of age. Cognitive and motor development was normal. His younger sister was diagnosed at birth, presenting with anemia and lactic acidosis at 1 month of age requiring periodical transfusions. She is now 14 months old and doing well. For both our patients, there was no clinical evidence of muscle involvement. We found a new homozygous mutation in YARS2, located in the α-anticodon-binding (αACB) domain, involved in the interaction with the anticodon of the cognate mt-tRNA(Tyr).Our study confirms that MLASA must be considered in patients with congenital sideroblastic anemia and underlines the importance of early diagnosis and supportive therapy in order to prevent severe complications. Clinical severity is variable among YARS2-reported patients: our review of the literature suggests a possible phenotype-genotype correlation, although this should be confirmed in a larger population.

5.
Nat Commun ; 5: 4287, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24989451

RESUMO

The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease.


Assuntos
Agenesia do Corpo Caloso/genética , Cerebelo/anormalidades , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Malformações do Sistema Nervoso/genética , Proteínas de Ligação a RNA/genética , Atrofias Musculares Espinais da Infância/genética , Sequência de Aminoácidos , Animais , Cerebelo/patologia , Córtex Cerebral/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Proteínas Fúngicas/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Malformações do Sistema Nervoso/patologia , Análise de Sequência de DNA , Síndrome , Peixe-Zebra
6.
EMBO Mol Med ; 5(2): 280-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23239471

RESUMO

Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holocytochrome c-type synthase (HCCS)gene [corrected]. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders.


Assuntos
Apoptose , Encéfalo/citologia , Olho/citologia , Proteínas de Peixes/metabolismo , Liases/metabolismo , Microftalmia/enzimologia , Oryzias/genética , Animais , Encéfalo/enzimologia , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/metabolismo , Modelos Animais de Doenças , Olho/enzimologia , Feminino , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Humanos , Liases/genética , Masculino , Microftalmia/genética , Microftalmia/fisiopatologia , Oryzias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA