Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Learn Behav ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671293

RESUMO

To investigate the extent of adoption of more efficient coding strategies, pigeons learned, in three experiments, a symbolic matching-to-sample task that featured an asymmetric sample-comparison mapping. In all experiments, one comparison was correct following one of the samples (one-to-one mapping), and another comparison was correct following the remaining samples (many-to-one mapping). The experiments differed in sample number; Experiment 1 featured three samples, Experiment 2 five samples, and Experiment 3 seven samples. Our goal was to assess the adoption of a single-code/default coding strategy, which establishes two response rules: one rule specific to the sample mapped one-to-one (the single code), and another rule to be applied following any other sample (the default rule). Alternatively, the animals could establish more response rules, one per sample. Thus, the single-code/default strategy allows learning a task via a reduced number of response rules, and the more samples are mapped many-to-one, the greater the savings it allows. As such, the three experiments should progressively be more amenable to the adoption of this strategy. Overall, the adoption of a single-code/default strategy was not widespread. When taken together with previous results, the present study suggests that the amount of training may affect the coding strategy pigeons adopt. Additionally, our results underscore that individual differences are a fundamental aspect to consider when studying learning flexibility.

2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806268

RESUMO

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson's disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs' design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at -80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.


Assuntos
Catecol O-Metiltransferase , Líquidos Iônicos , Ânions , Catecol O-Metiltransferase/química , Colina/química , Estabilidade Enzimática , Humanos , Líquidos Iônicos/química
3.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293152

RESUMO

Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.


Assuntos
Carboxiliases , Líquidos Iônicos , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Dopamina/uso terapêutico , Cisteína , Metanefrina , Glicerol/uso terapêutico , Trealose/uso terapêutico , Líquidos Iônicos/uso terapêutico , Catecóis/farmacologia , Catecóis/química , Estrogênios/uso terapêutico
4.
Environ Monit Assess ; 194(10): 705, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999477

RESUMO

Metalloproteomics is an innovative methodology for identifying of protein-associated mercury. Thus, we analyzed the muscle proteome of Arapaima gigas (pirarucu), collected in the Madeira River of the Brazilian Amazon, to identify protein-associated mercury, with the aim of identifying possible mercury biomarkers in fish muscle tissue. After obtaining the protein pellet, we conducted two-dimensional electrophoresis (2D PAGE) to fractionate the muscle proteome. Total mercury in muscle tissue and protein pellets and mapping of mercury content in protein spots of the 2D PAGE gels was determined using graphite furnace atomic absorption spectrometry (GFAAS). The protein-associated mercury identification was performed using liquid chromatography coupled with sequence mass spectrometry (LC‒MS/MS). Total mercury determinations by GFAAS indicated concentrations on the order of 153 ± 1.90 mg kg-1 and 142 ± 1.50 mg kg-1 (total precipitation of protein fraction) and 139 ± 1.45 mg kg-1 (fractional precipitation of protein fraction) in muscle tissue and protein pellets, respectively. Mercury concentrations in the range of 48 ± 0.90 to 165 ± 3.00 mg kg-1 were found in twelve protein spots. Among the 2D PAGE protein spots, eleven Hg-binding proteins were identified using LC‒MS/MS, which showed characteristics of mercury exposure biomarkers for important metabolic functions, such as five parvalbumin isoforms, triosephosphate isomerase, cofilin 2 (muscle), and fructose-bisphosphate aldolases.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Brasil , Cromatografia Líquida , Monitoramento Ambiental , Peixes/metabolismo , Mercúrio/análise , Músculos/química , Proteoma , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
5.
Arch Microbiol ; 203(3): 1089-1105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33161466

RESUMO

This study aimed to evaluate the genetic diversity of bacterial community associated to different sugarcane genotypes, association habitat and phenological phase of the culture, as well as to isolate, to identify and to characterize your potential for plant growth-promoting. Root and rhizospheric soil samples from RB 92579 and RB 867515 varieties were collected at 120 and 300 days after regrowth (DAR). The diversity of bacterial was evaluated through of the 16S rRNA and nifH genes. We found greater genetic diversity in the root endophytic habitat at 120 DAR. We identify the genera Burkholderia sp., Pantoea sp., Erwinia sp., Stenotrophomonas sp., Enterobacter sp. and Pseudomonas sp. The genera Bacillus sp. and Dyella sp. were only identified in the variety RB 92579. We found indices above 50% for biological nitrogen fixation, production of indole acetic acid and phosphate solubilization, showing that the use of these bacteria in biotechnological products is very promising.


Assuntos
Bactérias/genética , Ecossistema , Variação Genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Genótipo , Ácidos Indolacéticos , Fixação de Nitrogênio/fisiologia , Desenvolvimento Vegetal/fisiologia , RNA Ribossômico 16S/genética , Rizosfera
6.
Nanomedicine ; 36: 102429, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174419

RESUMO

Nanoparticles offer targeted delivery of drugs with minimal toxicity to surrounding healthy tissue and have great potential in the management of human papillomavirus (HPV)-related diseases. We synthesized lipid-modified AS1411 aptamers capable of forming nanoaggregates in solution containing Mg2+. The nanoaggregates presented suitable properties for pharmaceutical applications such as small size (100 nm), negative charge, and drug release. The nanoaggregates were loaded with acridine orange derivative C8 for its specific delivery into cervical cancer cell lines and HPV-positive tissue biopsies. This improved inhibition of HeLa proliferation and cell uptake without significantly affecting healthy cells. Finally, the nanoaggregates were incorporated in a gel formulation with promising tissue retention properties aiming at developing a local delivery strategy of the nanoaggregates in the female genital tract. Collectively, these findings suggest that the nanoformulation protocol has great potential for the delivery of both anticancer and antiviral agents, becoming a novel modality for cervical cancer management.


Assuntos
Antineoplásicos , Antivirais , Aptâmeros de Nucleotídeos , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Oligodesoxirribonucleotídeos , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacocinética , Aptâmeros de Nucleotídeos/farmacologia , Feminino , Células HeLa , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacocinética , Oligodesoxirribonucleotídeos/farmacologia , Neoplasias do Colo do Útero/metabolismo
7.
Eur J Neurosci ; 52(4): 3242-3255, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958881

RESUMO

Animal models of human diseases are crucial experimental tools to investigate the mechanisms involved in disease pathogenesis and to develop new therapies. In spite of the numerous animal models currently available that reproduce several neuropathological features of Parkinson disease (PD), it is challenging to have one that consistently recapitulates human PD conditions in both motor behaviors and biochemical pathological outcomes. Given that, we have implemented a new paradigm to expose rats to a chronic low dose of paraquat (PQ), using osmotic minipumps and characterized the developed pathologic features over time. The PQ exposure paradigm used lead to a rodent model of PD depicting progressive nigrostriatal dopaminergic neurodegeneration, characterized by a 41% significant loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc), a significant decrease of 18% and 40% of dopamine levels in striatum at week 5 and 8, respectively, and a significant 1.5-fold decrease in motor performance. We observed a significant increase of microglia activation state, sustained levels of α-synucleinopathy and increased oxidative stress markers in the SNpc. In summary, this is an explorative study that allowed to characterize an improved PQ-based rat model that recapitulates cardinal features of PD and may represent an attractive tool to investigate several mechanisms underlying the various aspects of PD pathogenesis as well as for the validation of the efficacy of new therapeutic approaches that targets different mechanisms involved in PD neurodegeneration.


Assuntos
Paraquat , Doença de Parkinson , Animais , Corpo Estriado , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Paraquat/toxicidade , Parte Compacta da Substância Negra , Ratos , Substância Negra
8.
Bioorg Chem ; 100: 103920, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413624

RESUMO

The G-quadruplex (G4)-forming sequence within the AS1411 derivatives with alternative nucleobases and backbones can improve the chemical and biological properties of AS1411. Zn(II) phthalocyanine (ZnPc) derivatives have potential as high-affinity G4 ligands because they have similar size and shape to the G-quartets. The interactions of four Zn(II) phthalocyanines with the G4 AS1411 aptamer and its derivatives were determined by biophysical techniques, molecular docking and gel electrophoresis. Cell viability assay was carried out to evaluate the antiproliferative effects of Zn(II) phthalocyanines and complexes. CD experiments showed structural changes after addition of ZnPc 4, consistent with multiple binding modes and conformations shown by NMR and gel electrophoresis. CD melting confirmed that ZnPc 2 and ZnPc 4, both containing eight positive charges, are able to stabilize the AT11 G4 structure (ΔTm > 30 °C and 18.5 °C, respectively). Molecular docking studies of ZnPc 3 and ZnPc 4 suggested a preferential binding to the 3'- and 5'-end, respectively, of the AT11 G4. ZnPc 3 and its AT11 and AT11-L0 complexes revealed pronounced cytotoxic effect against cervical cancer cells and no cytotoxicity to normal human cells. Zn(II) phthalocyanines provide the basis for the development of effective therapeutic agents as G4 ligands.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indóis/química , Indóis/farmacologia , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quadruplex G , Células HeLa , Humanos , Isoindóis , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Compostos de Zinco
9.
J Therm Biol ; 88: 102525, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32126000

RESUMO

The aim of this work was to investigate the thermal biology of the Spix's yellow-toothed cavy (Galea spixii) from the hot and dry environment of the Brazilian Caatinga by infrared thermography and biophysical equations. We monitored the rectal temperature, as well as the non-evaporative (radiative and convective pathways) and evaporative heat exchanges of males and females. The mean rectal temperature of females and males was 37.58 ± 0.02 and 37.47 ± 0.02 °C, respectively. We identified thermal windows by infrared thermography. The surface temperatures and the long-wave radiation heat exchanges were higher in the periocular, preocular, pinnae and vibrissae regions, in that order. The surface temperature of the periocular and preocular regions correlated positively with rectal temperature. Convective heat exchange was insignificant for thermoregulation by G. spixii. Evaporative heat loss increased when the thermal environment inhibited the radiative pathway. Females showed higher evaporative thermolysis than males at times of greater thermal challenge, suggesting a lower tolerance to heat stress. Therefore, infrared thermography identified the thermal windows, which represented the first line of defense against overheating in G. spixii. The periocular and preocular surface temperatures could be used as predictors of the thermal state of G. spixii.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Roedores/fisiologia , Animais , Brasil , Olho , Feminino , Florestas , Umidade , Raios Infravermelhos , Masculino , Temperatura , Termografia , Clima Tropical , Vento
10.
Org Biomol Chem ; 17(11): 2992-3002, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30810582

RESUMO

DNA aptamers represent a way to target cancer cells at a molecular level and continue to be developed with a view to improve treatment and imaging in cancer medicine. AT11-L0, derived from the DNA sequence AT11, forms a single major parallel G-quadruplex (G4) conformation and exhibits an anti-proliferative activity similar to that of AT11 and AS1411 aptamers. On the other side, acridine orange derivatives represent a valuable class of G4 ligands. Herein, we evaluate AT11-L0 G4 as a supramolecular carrier for the delivery of acridine ligands C3, C5 and C8 to HeLa cancer cells. The CD titrations suggest no changes in the chiroptical signal upon addition of an excess of ligands maintaining the parallel G4 topology and C8 stabilizes the structure for more than 20 °C. All the ligands exhibit high affinity (micromolar range) towards AT11-L0 G4, and the respective complexes against nucleolin (nanomolar range) suggesting that the ligands do not negatively affect the recognition of the nucleolin by AT11-L0 G4. NMR studies showed that AT11-L0 forms a G4 containing four G-tetrad layers. Ligand C8 binds AT11-L0 G4 through π-π stacking of the acridine moiety onto the top-tetrad with the involvement of additional interactions with the ligand's side chain and iodobenzene ring. In vitro, the complexes lowered the ligand's cytotoxicity towards non-malignant cells but have a weak inhibitory effect in HeLa cancer cells, except for the AT11-L0-C5 complex. All complexes are efficiently internalized into nucleolin-positive HeLa cells. Overall, these results suggest that AT11-L0 can act as an aptamer by targeting nucleolin and a delivery system of cytotoxic ligands for cervical cancer.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Acridinas/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/patologia
11.
Appl Microbiol Biotechnol ; 103(14): 5483-5500, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127356

RESUMO

Membrane proteins (MP) constitute 20-30% of all proteins encoded by the genome of various organisms and perform a wide range of essential biological functions. However, despite they represent the largest class of protein drug targets, a relatively small number high-resolution 3D structures have been obtained yet. Membrane protein biogenesis is more complex than that of the soluble proteins and its recombinant biosynthesis has been a major drawback, thus delaying their further structural characterization. Indeed, the major limitation in structure determination of MP is the low yield achieved in recombinant expression, usually coupled to low functionality, pinpointing the optimization target in recombinant MP research. Recently, the growing attention that have been dedicated to the upstream stage of MP bioprocesses allowed great advances, permitting the evolution of the number of MP solved structures. In this review, we analyse and discuss effective solutions and technical advances at the level of the upstream stage using prokaryotic and eukaryotic organisms foreseeing an increase in expression yields of correctly folded MP and that may facilitate the determination of their three-dimensional structure. A section on techniques used to protein quality control and further structure determination of MP is also included. Lastly, a critical assessment of major factors contributing for a good decision-making process related to the upstream stage of MP is presented.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/genética , Biossíntese de Proteínas , Bactérias/química , Bactérias/genética , Humanos , Microrganismos Geneticamente Modificados , Conformação Molecular , Dobramento de Proteína , Proteínas Recombinantes/genética
12.
Org Biomol Chem ; 16(15): 2776-2786, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611599

RESUMO

Targeting quadruplex DNA structures with small molecules is a promising strategy for anti-cancer drug design. Four phenanthroline polyazamacrocycles were studied for their binding affinity, thermal stabilization, inhibitory effect on the activity of helicase towards human telomeric 22AG and oncogene promoter c-MYC G-quadruplexes (G4s), and their ability to inhibit Taq polymerase-mediated DNA extension. The fluorescence resonance energy transfer (FRET) melting assay indicates that the melting temperature increases (ΔTm values) of c-MYC and 22AG G4s are 17.2 and 20.3 °C, respectively, for the ligand [32]phen2N4 followed by [16]phenN4 (11.3 and 15.0 °C, for c-MYC and 22AG, respectively). Competitive FRET assays show that [32]phen2N4 and [16]phenN4 exhibit G4 selectivity over duplex DNA. Different G4s were compared; no considerable selectivity of the ligands for a specific G4 was found. Circular dichroism (CD) confirms the formation of G4 structures and the melting experiments show that [16]phenN4 and [32]phen2N4 are the most stabilizing ligands with a ΔTm of 19.3 °C and 15.1 °C, respectively, at 5 molar equivalents for the c-MYC G4. The fluorescent intercalator displacement (FID) assay also demonstrates that ligand [32]phen2N4 furnishes very low DC50 values (0.87-1.24 µM), indicating high stabilization of c-MYC and 22AG G4s. These results suggest that the hexyl chain in these compounds plays an important role in regulating the stabilization of these G4s. Binding constants, determined by fluorescence titrations, indicate a moderate ligand-G4 binding with KSV between 105 and 106 M-1 in which [16]phenN4 has a slightly higher apparent binding constant for telomeric 22AG G4 than that for the c-MYC G4. The ligand's ability to inhibit Taq polymerase confirms the biological activity of [16]phenN4 and [32]phen2N4 against the c-MYC G4. In addition, ligands [32]phen2N4 and [16]phenN4 affect the unwinding activity of Pif1 in the presence of DNA systems harboring c-MYC and telomeric G4 motifs.


Assuntos
Antineoplásicos/síntese química , Compostos Aza/síntese química , DNA/química , Quadruplex G , Compostos Macrocíclicos/síntese química , Fenantrolinas/síntese química , Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Helicases/química , Desenho de Fármacos , Genes myc , Células HeLa , Humanos , Ligantes , Compostos Macrocíclicos/farmacologia , Fenantrolinas/farmacologia , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Taq Polimerase/química , Taq Polimerase/genética , Telômero/química , Termodinâmica
13.
Electrophoresis ; 38(22-23): 2975-2980, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28683160

RESUMO

Affinity chromatography based on amino acids as interacting ligands was already indicated as an alternative compared to ion exchange or hydrophobic interaction for plasmid DNA purification. Understanding the recognition mechanisms occurring between histidine-based ligands and nucleic acids enables more efficient purification of a DNA vaccine, as the binding and elution conditions can be adjusted in order to enhance the purification performance. Decreasing pH to slightly acidic conditions increases the positive charge of histidine ligand, what influences the type of interaction between chromatographic support and analytes. This was proven in this work, where hydrophobic effects established in the presence of ammonium sulfate were affected at pH 5.0 in comparison to pH 8.0, while electrostatic and cation-π interactions were intensified. Histidine ligand at pH 5.0 interacts with phosphate groups or aromatic rings of plasmid DNA. Due to different responses of RNA and pDNA on mobile phase changes, the elution order between RNA and pDNA was changed with mobile phase pH decrease from 8.0 to 5.0. The phenomenon was more evident with L-histidine ligand due to more hydrophilic character, leading to an improved selectivity of L-histidine-modified chromatographic monolith, allowing the product recovery with 99% of purity (RNA removal). With the 1-benzyl- L-histidine ligand, stronger and less selective interactions with the nucleic acids were observed due to the additional hydrophobicity associated with the phenyl aromatic ring. Optimization of sample displacement chromatography parameters (especially (NH4 )2 SO4 concentration) at slightly acidic pH enabled excellent isolation of pDNA, by the removal of RNA in a negative mode, with binding capacities above 1.5 mg pDNA per mL of chromatographic support.


Assuntos
Cromatografia de Afinidade/métodos , Histidina/química , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/isolamento & purificação , Plasmídeos/isolamento & purificação , Proteínas Repressoras/genética , Vacinas de DNA/isolamento & purificação , DNA/isolamento & purificação , Histidina/metabolismo , Ligantes , Vacinas contra Papillomavirus/genética , Plasmídeos/genética , Vacinas de DNA/genética
14.
Mol Pharm ; 14(3): 626-638, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199112

RESUMO

Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Nanopartículas/administração & dosagem , Plasmídeos/genética , Rodaminas/administração & dosagem , Animais , Clonagem Molecular/métodos , Escherichia coli/genética , Fluorescência , Gelatina/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Polímeros/administração & dosagem , Transfecção/métodos
15.
Biomacromolecules ; 18(9): 2928-2936, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28813136

RESUMO

The development of a suitable delivery system and the targeting of intracellular organelles are both essential for the success of drug and gene therapies. The conception of fluorescent ligands, displaying targeting specificity together with low toxicity, is an emerging and reliable tool to develop innovative delivery systems. Biocompatible BSA or pDNA/ligand nanoparticles were synthesized by a coprecipitation method and were shown to display adequate sizes and morphology for delivery purposes, and positive surface charges. Additionally, these fluorescent vectors can target specific intracellular organelles. In vitro transfection mediated by BSA or pDNA based carriers can result in the accumulation of BSA in the cytosol, lysosomes, and mitochondria or the expression of the plasmid-encoded protein, respectively. Moreover, the therapeutic effect of pDNA/ligand vectors in cancer gene therapy instigates further research aiming clinical translation.


Assuntos
DNA/química , Corantes Fluorescentes/química , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Plasmídeos/química , Citosol/efeitos dos fármacos , Citosol/metabolismo , DNA/genética , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1281-1292, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27865994

RESUMO

BACKGROUND: G-quadruplexes (G4) are found at important genome regions such as telomere ends and oncogene promoters. One prominent strategy to explore the therapeutic potential of G4 is stabilized it with specific ligands. METHODS: We report the synthesis of new phenanthroline, phenyl and quinoline acyclic bisoxazole compounds in order to explore and evaluate the targeting to c-myc and human telomeric repeat 22AG G4 using FRET-melting, CD-melting, NMR, fluorescence titrations and FID assays. RESULTS: The design strategy has led to potent compounds (Phen-1 and Phen-2) that discriminate different G4 structures (human telomeric sequences and c-myc promoter) and selectively stabilize G4 over duplex DNA. CD studies show that Phen-2 binds and induces antiparallel topologies in 22AG quadruplex and also binds c-myc promotor, increasing their Tm in about 12°C and 30°C respectively. In contrast, Phen-1 induces parallel topologies in 22AG and c-myc, with a moderate stabilization of 4°C for both sequences. Consistent with a CD melting study, Phen-2 binds strongly (K=106 to 107M-1) to c-myc and 22AG quadruplexes. CONCLUSIONS: Phen-1 and Phen-2 discriminated among various quadruplex topologies and exhibited high selectivity for quadruplexes over duplexes. Phen-2 retains antiparallel topologies for quadruplex 22AG and does not induce conformational changes on the parallel c-myc quadruplex although Phen-1 favors the parallel topology. NMR studies also showed that the Phen-2 binds to the c-myc quadruplex via end stacking. GENERAL SIGNIFICANCE: Overall, the results suggest the importance of Phen-2 as a scaffold for the fine-tuning with substituents in order to enhance binding and stabilization to G4 structures. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/metabolismo , DNA de Neoplasias/metabolismo , Desenho de Fármacos , Quadruplex G , Guanosina/química , Oxazóis/metabolismo , Fenantrolinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Telômero/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Dicroísmo Circular , DNA de Neoplasias/química , DNA de Neoplasias/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Quadruplex G/efeitos dos fármacos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Desnaturação de Ácido Nucleico , Oxazóis/síntese química , Oxazóis/farmacologia , Fenantrolinas/síntese química , Fenantrolinas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Relação Estrutura-Atividade , Telômero/química , Telômero/efeitos dos fármacos , Temperatura
17.
Analyst ; 142(16): 2982-2994, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28744540

RESUMO

G-quadruplex (G4) is involved in many biological processes, such as telomere function, gene expression and DNA replication. The selective isolation of G4 using affinity ligands that bind tightly and selectively is a valuable strategy for discovering new G4 binders for the separation of G4 from duplexes or the discrimination of G4 structures. In this work, one affinity chromatographic support was prepared using a naphthalene amine as a G4 binder. The ligand was immobilized on epoxy-activated Sepharose CL-6B using a long spacer arm and was characterized by HR-MAS spectroscopy. The supercoiled (sc) isoform of pVAX1-LacZ and pVAX1-G4 was isolated from a native sample. Also, the recovery and isolation of the plasmid isoforms from Escherichia coli lysate samples were achieved using an ionic gradient with different concentrations of NaCl in 10 mM Tris-HCl (pH 7.4). The retention times of different DNA/single strand sequences that can form G4, such as, c-MYC, c-kit1, c-kit2, tetrameric, telomeric (23AG), thrombin aptamer (TBA) and 58Sγ3 in this support were evaluated. Our experimental results suggest that the support exhibits selectivity for parallel c-MYC and c-kit1 G4s. In vitro transcription was performed using purified sc pVAX1-G4 and pPH600 to induce G4 formation and circular dichroism (CD) analysis confirmed that both transcripts adopt a parallel G4 topology.


Assuntos
Aminas , Quadruplex G , Naftalenos , Dicroísmo Circular , Escherichia coli , Plasmídeos , Telômero
18.
Crit Rev Microbiol ; 42(3): 364-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25806423

RESUMO

Arcobacter genus currently comprises 18 recognized species, among which Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii have been associated with human and animal disease. Although these organisms, with special emphasis A. butzleri, are emerging as clinical pathogens, several aspects of their epidemiology and virulence are only starting to be clarified. In vitro human and animal cell culture assays have been used to show that several Arcobacter species can adhere to and invade eukaryotic cells, induce an immune response and produce toxins that damage host cells. In addition, data from genome sequencing highlighted several potential markers that may be helpful candidates for the study and understanding of these mechanisms; however, more work is necessary to clarify the molecular mechanisms involved in Arcobacter virulence. Arcobacter can be considered a relatively robust organism showing to be able to survive in adverse conditions, as the ones imposed by food processing and storage. Moreover, these bacteria have shown increased antibiotic resistance, along with high multidrug resistance. In this review, we seek to update the state-of-the-art concerning Arcobacter distribution, its interaction with the host, the trends of antibiotic resistance, its ability to survive, and finally the use of natural antimicrobials for control of Arcobacter.


Assuntos
Antibacterianos/farmacologia , Arcobacter/efeitos dos fármacos , Arcobacter/patogenicidade , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Negativas/microbiologia , Animais , Arcobacter/genética , Arcobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Virulência
19.
Appl Microbiol Biotechnol ; 100(8): 3723-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860940

RESUMO

The present study reports the successful production of human pre-miR-29b both intra- and extracellularly in the marine phototrophic bacterium Rhodovulum sulfidophilum using recombinant RNA technology. In a first stage, the optimal transformation conditions (0.025 µg of plasmid DNA, with a heat-shock of 2 min at 35 °C) were established, in order to transfer the pre-miR-29b encoding plasmid to R. sulfidophilum host. Furthermore, the extracellular recovery of this RNA product from the culture medium was greatly improved, achieving quantities that are compatible with the majority of applications, namely for in vitro or in vivo studies. Using this system, the extracellular human pre-miR-29b concentration was approximately 182 µg/L, after 40 h of bacterial growth, and the total intracellular pre-miR-29b was of about 358 µg/L, at 32 h. At the end of the fermentation, it was verified that almost 87 % of cells were viable, indicating that cell lysis is minimized and that the extracellular medium is not highly contaminated with the host intracellular ribonucleases (RNases) and endotoxins, which is a critical parameter to guarantee the microRNA (miRNA) integrity. These findings demonstrate that pre-miRNAs can be produced by recombinant RNA technology, offering novel clues for the production of natural pre-miRNA agents for functional studies and RNA interference (RNAi)-based therapeutics.


Assuntos
Expressão Gênica , MicroRNAs/biossíntese , Rhodovulum/metabolismo , Meios de Cultura/metabolismo , Humanos , MicroRNAs/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Rhodovulum/genética
20.
J Sep Sci ; 39(18): 3544-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27600622

RESUMO

Minicircle DNA is a new biotechnological product with beneficial therapeutic perspectives for gene therapy because it is constituted only by the eukaryotic transcription unit. These features improve minicircle DNA safety and increase its therapeutic effect. However, being a recently developed product, there is a need to establish efficient purification methodologies, enabling the recovery of the supercoiled minicircle DNA isoform. Thus, this work describes the minicircle DNA purification using an anion exchange monolithic support. The results show that with this column it is possible to achieve a good selectivity, which allows the isolation of the supercoiled minicircle DNA isoform from impurities. Overall, this study shows a promising approach to obtain the minicircle DNA sample with adequate quality for future therapeutic applications.


Assuntos
Cromatografia por Troca Iônica/métodos , DNA Super-Helicoidal/isolamento & purificação , Resinas de Troca Aniônica/química , Cromatografia por Troca Iônica/instrumentação , DNA Super-Helicoidal/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA