Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070063

RESUMO

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.


Assuntos
Anlodipino/farmacologia , Microscopia de Fluorescência , Anlodipino/química , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/metabolismo , Microscopia Confocal , Modelos Biológicos , Conformação Molecular , Soluções
2.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27684064

RESUMO

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

3.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376863

RESUMO

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Assuntos
Transtornos Cognitivos/etiologia , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Degeneração Neural/etiologia , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Deficiência Intelectual/genética , Masculino , Camundongos , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Transtornos Parkinsonianos/genética , Sinapses/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura
4.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38012000

RESUMO

In the heart, genetic or acquired mishandling of diastolic [Ca2+] by ryanodine receptor type 2 (RyR2) overactivity correlates with risks of arrhythmia and sudden cardiac death. Strategies to avoid these risks include decrease of Ca2+ release by drugs modulating RyR2 activity or increase in Ca2+ uptake by drugs modulating SR Ca2+ ATPase (SERCA2a) activity. Here, we combine these strategies by developing experimental compounds that act simultaneously on both processes. Our screening efforts identified the new 1,4-benzothiazepine derivative GM1869 as a promising compound. Consequently, we comparatively studied the effects of the known RyR2 modulators Dantrolene and S36 together with GM1869 on RyR2 and SERCA2a activity in cardiomyocytes from wild type and arrhythmia-susceptible RyR2R2474S/+ mice by confocal live-cell imaging. All drugs reduced RyR2-mediated Ca2+ spark frequency but only GM1869 accelerated SERCA2a-mediated decay of Ca2+ transients in murine and human cardiomyocytes. Our data indicate that S36 and GM1869 are more suitable than dantrolene to directly modulate RyR2 activity, especially in RyR2R2474S/+ mice. Remarkably, GM1869 may represent a new dual-acting lead compound for maintenance of diastolic [Ca2+].


Assuntos
Dantroleno , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Arritmias Cardíacas/metabolismo , Transporte Biológico , Dantroleno/farmacologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
Children (Basel) ; 10(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238339

RESUMO

The forced expiratory volume in one second (FEV1) is regularly used for the follow-up of patients with non-cystic fibrosis bronchiectasis (nCF-BE). The lung clearance index (LCI), measured by the multiple breath washout test, has been recently proposed as a lung function measure and a potential tool more sensitive than the FEV1 measured by spirometry in assessing airway changes seen on imaging. While several data have been endorsed as a useful endpoint in clinical trials of patients with early or mild CF lung disease and as the main outcome measure in clinical trials with CFTR modulators in children and adolescents with CF, few data are available in the context of non-CF bronchiectasis. The aim of this pilot study was to compare the LCI with the FEV1 as well as the forced vital capacity (FVC), the forced expiratory flow at 25-75% of the FVC (FEF 25-75%), and chest imaging based on the modified Reiff score in patients with primary ciliary dyskinesia (PCD) and non-CF, non-PCD bronchiectasis (PCD-BE and nCFnPCD-BE). Additionally, we compared each test's duration and the preferred technique. Twenty children were included; nine had PCD-BE and eleven had nCFnPCD-BE. The median age was twelve years (ages ranging between five and eighteen years). The median LCI was seven while the median z-scores of the FEV1, FVC, and FEF 25-75% were -0.6, 0, and -0.9, respectively. No significant associations or correlations were observed between LCI, spirometric parameters, or the modified Reiff score. However, nearly half of the population (n = 9) had an abnormal LCI, while only 10% had an abnormal FEV1. A total of 75% of children preferred MBW, despite it lasting five times longer than spirometry. In this paper, the authors suggest that LCI might be useful in a cohort of pediatric patients with PCD-BE and nCFnPCD-BE for detecting early lung function changes during their follow-up. Additionally, MBW seems to be preferred by patients. These data may encourage further studies on this topic.

6.
J Med Chem ; 66(23): 15761-15775, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991191

RESUMO

To discover new multifunctional agents for the treatment of cardiovascular diseases, we designed and synthesized a series of compounds with a cyclopropyl alcohol moiety and evaluated them in biochemical assays. Biological screening identified derivatives with dual activity: preventing Ca2+ leak through ryanodine receptor 2 (RyR2) and enhancing cardiac sarco-endoplasmic reticulum (SR) Ca2+ load by activation of Ca2+-dependent ATPase 2a (SERCA2a). The compounds that stabilize RyR2 at micro- and nanomolar concentrations are either structurally related to RyR-stabilizing drugs or Rycals or have structures similar to them. The novel compounds also demonstrate a good ability to increase ATP hydrolysis mediated by SERCA2a activity in cardiac microsomes, e.g., the half-maximal effective concentration (EC50) was as low as 383 nM for compound 12a, which is 1,4-benzothiazepine with two cyclopropanol groups. Our findings indicate that these derivatives can be considered as new lead compounds to improve cardiac function in heart failure.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Tiazepinas/química , Tiazepinas/farmacologia
7.
Eur J Pediatr ; 171(1): 193-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21947220

RESUMO

UNLABELLED: We present a 9-month-old boy with megaloblastic anaemia, neutropenia and hypogammaglobulinaemia due to vitamin B12 deficiency. The deficiency was secondary to prolonged exclusive breastfeeding with inadequate nutritional amounts of vitamin B12 from the mother. There were no clinical or biological signs of maternal anaemia or macrocytosis. Treatment with oral vitamin B12 rapidly improved the biological findings of the child. Vitamin B12 deficiency should be considered in infants older than 2 months presenting with failure to thrive, neurocognitive retardation or even pancytopenia and hypogammaglobulinaemia, even in the absence of any signs of maternal anaemia or macrocytosis. Therefore, evaluation of vitamin B12 status during pregnancy and lactation is necessary in order to prevent B12 deficiency and its possible long-term effects in infants. CONCLUSION: Further studies should be conducted to evaluate the optimal oral dosage of vitamin B12 in children since limited data on the use of oral B12 substitution are available.


Assuntos
Aleitamento Materno/efeitos adversos , Deficiência de Vitamina B 12/diagnóstico , Dieta , Feminino , Humanos , Lactente , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Deficiência de Vitamina B 12/etiologia
8.
Nat Neurosci ; 11(6): 659-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469810

RESUMO

The subunit composition of postsynaptic non-NMDA-type glutamate receptors (GluRs) determines the function and trafficking of the receptor. Changes in GluR composition have been implicated in the homeostasis of neuronal excitability and synaptic plasticity underlying learning. Here, we imaged GluRs in vivo during the formation of new postsynaptic densities (PSDs) at Drosophila neuromuscular junctions coexpressing GluRIIA and GluRIIB subunits. GluR composition was independently regulated at directly neighboring PSDs on a submicron scale. Immature PSDs typically had large amounts of GluRIIA and small amounts of GluRIIB. During subsequent PSD maturation, however, the GluRIIA/GluRIIB composition changed and became more balanced. Reducing presynaptic glutamate release increased GluRIIA, but decreased GluRIIB incorporation. Moreover, the maturation of GluR composition correlated in a site-specific manner with the level of Bruchpilot, an active zone protein that is essential for mature glutamate release. Thus, we show that an activity-dependent, site-specific control of GluR composition can contribute to match pre- and postsynaptic assembly.


Assuntos
Regulação da Expressão Gênica/fisiologia , Junção Neuromuscular/metabolismo , Receptores de AMPA/fisiologia , Animais , Animais Geneticamente Modificados , Simulação por Computador , Drosophila , Proteínas de Drosophila , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Recuperação de Fluorescência Após Fotodegradação/métodos , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Mutação/fisiologia , Técnicas de Patch-Clamp , Transporte Proteico/fisiologia , Receptores de AMPA/genética , Fatores de Tempo
9.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822845

RESUMO

Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.


Assuntos
Complexo de Golgi/metabolismo , Vesículas Sinápticas/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico/fisiologia , Transmissão Sináptica/fisiologia
10.
Nat Neurosci ; 8(7): 898-905, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16136672

RESUMO

Insight into how glutamatergic synapses form in vivo is important for understanding developmental and experience-triggered changes of excitatory circuits. Here, we imaged postsynaptic densities (PSDs) expressing a functional, GFP-tagged glutamate receptor subunit (GluR-IIA(GFP)) at neuromuscular junctions of Drosophila melanogaster larvae for several days in vivo. New PSDs, associated with functional and structural presynaptic markers, formed independently of existing synapses and grew continuously until reaching a stable size within hours. Both in vivo photoactivation and photobleaching experiments showed that extrasynaptic receptors derived from diffuse, cell-wide pools preferentially entered growing PSDs. After entering PSDs, receptors were largely immobilized. In comparison, other postsynaptic proteins tested (PSD-95, NCAM and PAK homologs) exchanged faster and with no apparent preference for growing synapses. We show here that new glutamatergic synapses form de novo and not by partitioning processes from existing synapses, suggesting that the site-specific entry of particular glutamate receptor complexes directly controls the assembly of individual PSDs.


Assuntos
Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Drosophila melanogaster , Proteínas de Fluorescência Verde , Larva , Substâncias Luminescentes , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Receptores de AMPA/metabolismo
11.
PLoS One ; 14(2): e0211652, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753188

RESUMO

FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Comportamento Animal , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sequência Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Locomoção , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/metabolismo , Sistema Nervoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Receptoras Sensoriais/fisiologia , Técnicas do Sistema de Duplo-Híbrido
12.
Acta Clin Belg ; 73(3): 233-235, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28891754

RESUMO

Objective and importance Mounier Kuhn syndrome is usually diagnosed in adulthood, and only a few cases have been described in childhood. Clinical presentation We present the case of a seven-year-old boy suffering from recurrent pneumonia and atelectasis. Intervention Previously performed chest X-rays showed bilateral hyperinflation and tracheobronchomegaly. Chest computed tomography (CT) confirmed the presence of distal enlargement of trachea and bronchi. Tracheobronchomegaly associated with recurrent respiratory tract infections is consistent with Mounier Kuhn syndrome. Pseudomonas aeruginosa was isolated from the sputum of the patient. He was then treated according to the guidelines for P. aeruginosa management in cystic fibrosis patients considering the similarities in clinical presentations and pathophysiology of both diseases. Antibiotic treatment resulted in a remarkable reduction of events of pulmonary exacerbation and hospitalizations. There are no specific guidelines for treatment options in case of pulmonary exacerbation of Mounier Kuhn syndrome. Case reports discussing the choice and efficiency of antibiotic treatment are random. Conclusion headings We share our experience of treating pulmonary exacerbation caused by P. aeruginosa in a patient with Mounier Kuhn syndrome suggesting a possible treatment option of pseudomonas infections in this syndrome.


Assuntos
Atelectasia Pulmonar , Traqueobroncomegalia , Criança , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Radiografia Torácica , Traqueia/diagnóstico por imagem , Traqueia/patologia , Traqueia/fisiopatologia
13.
Neuron ; 99(6): 1216-1232.e7, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30174114

RESUMO

Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) supplying presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is unclear. Live imaging in Drosophila larvae and mouse hippocampal neurons provides evidence that presynaptic biogenesis depends on axonal co-transport of SV and AZ proteins in presynaptic lysosome-related vesicles (PLVs). Loss of the lysosomal kinesin adaptor Arl8 results in the accumulation of SV- and AZ-protein-containing vesicles in neuronal cell bodies and a corresponding depletion of SV and AZ components from presynaptic sites, leading to impaired neurotransmission. Conversely, presynaptic function is facilitated upon overexpression of Arl8. Our data reveal an unexpected function for a lysosome-related organelle as an important building block for presynaptic biogenesis.


Assuntos
Transporte Axonal/fisiologia , Lisossomos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Transporte Proteico/fisiologia , Transmissão Sináptica/fisiologia
14.
Neuron ; 95(6): 1350-1364.e12, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28867551

RESUMO

Neural information processing depends on precisely timed, Ca2+-activated synaptic vesicle exocytosis from release sites within active zones (AZs), but molecular details are unknown. Here, we identify that the (M)Unc13-family member Unc13A generates release sites and show the physiological relevance of their restrictive AZ targeting. Super-resolution and intravital imaging of Drosophila neuromuscular junctions revealed that (unlike the other release factors Unc18 and Syntaxin-1A) Unc13A was stably and precisely positioned at AZs. Local Unc13A levels predicted single AZ activity. Different Unc13A portions selectively affected release site number, position, and functionality. An N-terminal fragment stably localized to AZs, displaced endogenous Unc13A, and reduced the number of release sites, while a C-terminal fragment generated excessive sites at atypical locations, resulting in reduced and delayed evoked transmission that displayed excessive facilitation. Thus, release site generation by the Unc13A C terminus and their specific AZ localization via the N terminus ensure efficient transmission and prevent ectopic, temporally imprecise release.


Assuntos
Proteínas de Transporte/metabolismo , Drosophila , Exocitose/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura
15.
Elife ; 42015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26274777

RESUMO

Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.


Assuntos
Transporte Axonal , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Análise Mutacional de DNA , Proteínas de Drosophila/genética , Imagem Óptica , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico
16.
Elife ; 32014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25392983

RESUMO

CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memória , Sinapses/metabolismo , Animais , Apoptose , Condicionamento Psicológico , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Espectrometria de Massas , Corpos Pedunculados/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Densidade Pós-Sináptica/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Olfato
17.
Cell Rep ; 7(5): 1417-1425, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24882013

RESUMO

Neurotransmission involves the exo-endocytic cycling of synaptic vesicles (SVs) within nerve terminals. Exocytosis is facilitated by a cytomatrix assembled at the active zone (AZ). The precise spatial and functional relationship between exocytic fusion of SVs at AZ membranes and endocytic SV retrieval is unknown. Here, we identify the scaffold G protein coupled receptor kinase 2 interacting (GIT) protein as a component of the AZ-associated cytomatrix and as a regulator of SV endocytosis. GIT1 and its D. melanogaster ortholog, dGIT, are shown to directly associate with the endocytic adaptor stonin 2/stoned B. In Drosophila dgit mutants, stoned B and synaptotagmin levels are reduced and stoned B is partially mislocalized. Moreover, dgit mutants show morphological and functional defects in SV recycling. These data establish a presynaptic role for GIT in SV recycling and suggest a connection between the AZ cytomatrix and the endocytic machinery.


Assuntos
Proteínas de Drosophila/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Endocitose , Exocitose , Reguladores de Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
18.
J Cell Biol ; 188(4): 565-79, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20176924

RESUMO

Active zones (AZs) are presynaptic membrane domains mediating synaptic vesicle fusion opposite postsynaptic densities (PSDs). At the Drosophila neuromuscular junction, the ELKS family member Bruchpilot (BRP) is essential for dense body formation and functional maturation of AZs. Using a proteomics approach, we identified Drosophila Syd-1 (DSyd-1) as a BRP binding partner. In vivo imaging shows that DSyd-1 arrives early at nascent AZs together with DLiprin-alpha, and both proteins localize to the AZ edge as the AZ matures. Mutants in dsyd-1 form smaller terminals with fewer release sites, and release less neurotransmitter. The remaining AZs are often large and misshapen, and ectopic, electron-dense accumulations of BRP form in boutons and axons. Furthermore, glutamate receptor content at PSDs increases because of excessive DGluRIIA accumulation. The AZ protein DSyd-1 is needed to properly localize DLiprin-alpha at AZs, and seems to control effective nucleation of newly forming AZs together with DLiprin-alpha. DSyd-1 also organizes trans-synaptic signaling to control maturation of PSD composition independently of DLiprin-alpha.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Terminações Pré-Sinápticas/metabolismo , Homologia de Sequência de Aminoácidos , Potenciais Sinápticos , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Locomoção/fisiologia , Longevidade/fisiologia , Mutação/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Fenótipo , Fosfoproteínas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ligação Proteica , Transporte Proteico , Proteômica , Receptores de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA