Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(1): e21106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165997

RESUMO

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Assuntos
Proliferação de Células , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição Sp7/metabolismo , Células-Tronco , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Fator de Transcrição Sp7/genética
2.
Am J Respir Cell Mol Biol ; 62(5): 577-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721618

RESUMO

Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.


Assuntos
Vesículas Extracelulares/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipóxia/complicações , Indóis/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Pirróis/efeitos adversos , Animais , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Ativação de Macrófagos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/patologia , Neovascularização Fisiológica , Ratos Sprague-Dawley , Remodelação Vascular , Fator de von Willebrand/metabolismo
3.
Eur Respir J ; 55(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949110

RESUMO

Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.


Assuntos
Artéria Pulmonar , Doenças Vasculares , Catéteres , Células Cultivadas , Células Endoteliais , Humanos , Pulmão
4.
Blood ; 132(19): 2053-2066, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30213875

RESUMO

Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Medula Óssea/patologia , Proteínas do Citoesqueleto/genética , Deleção de Genes , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Animais , Medula Óssea/metabolismo , Autorrenovação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Mielofibrose Primária/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
5.
J Cell Physiol ; 234(11): 21193-21198, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012111

RESUMO

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling and ultimately death. Two rodent models of PH include treatment with monocrotaline or exposure to a vascular endothelial growth factor receptor inhibitor and hypoxia. Studies in these models indicated that damaged lung cells evolve extracellular vesicles which induce production of progenitors that travel back to the lung and induce PH. A study in patients with pulmonary myelofibrosis and PH indicated that 100 cGy lung irradiation could remit both diseases. Previous studies indicated that murine progenitors were radiosensitive at very low doses, suggesting that 100 cGy treatment of mice with induced PH might be an effective PH therapy. Our hypothesis is that the elimination of the PH-inducing marrow cells by low dose irradiation would remove the cellular influences creating PH. Here we show that low dose whole-body irradiation can both prevent and reverse established PH in both rodent models of PH.


Assuntos
Hipertensão Pulmonar , Irradiação Corporal Total , Animais , Células da Medula Óssea/efeitos da radiação , Camundongos , Radioterapia
6.
Nature ; 499(7459): 491-5, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23863940

RESUMO

The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities. The detailed pathogenesis of this disorder has remained unclear. Here we use a conditional knockout (floxed) Ptpn11 allele (Ptpn11(fl)) and Cre recombinase transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts (lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be osteoclasts. LysMCre;Ptpn11(fl/fl) mice had mild osteopetrosis. Notably, however, CtskCre;Ptpn11(fl/fl) mice developed features very similar to metachondromatosis. Lineage tracing revealed a novel population of CtskCre-expressing cells in the perichondrial groove of Ranvier that display markers and functional properties consistent with mesenchymal progenitors. Chondroid neoplasms arise from these cells and show decreased extracellular signal-regulated kinase (ERK) pathway activation, increased Indian hedgehog (Ihh) and parathyroid hormone-related protein (Pthrp, also known as Pthlh) expression and excessive proliferation. Shp2-deficient chondroprogenitors had decreased fibroblast growth factor-evoked ERK activation and enhanced Ihh and Pthrp expression, whereas fibroblast growth factor receptor (FGFR) or mitogen-activated protein kinase kinase (MEK) inhibitor treatment of chondroid cells increased Ihh and Pthrp expression. Importantly, smoothened inhibitor treatment ameliorated metachondromatosis features in CtskCre;Ptpn11(fl/fl) mice. Thus, in contrast to its pro-oncogenic role in haematopoietic and epithelial cells, Ptpn11 is a tumour suppressor in cartilage, acting through a FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to prevent excessive Ihh production.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Condromatose/metabolismo , Condromatose/patologia , Exostose Múltipla Hereditária/metabolismo , Exostose Múltipla Hereditária/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Transdução de Sinais , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Cartilagem/metabolismo , Cartilagem/patologia , Catepsina K/deficiência , Catepsina K/genética , Catepsina K/metabolismo , Divisão Celular , Linhagem da Célula , Condromatose/tratamento farmacológico , Condromatose/genética , Exostose Múltipla Hereditária/tratamento farmacológico , Exostose Múltipla Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Proteínas Hedgehog/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091699

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , Terapêutica com RNAi/métodos , Regeneração , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , MicroRNAs/metabolismo
8.
Stem Cells ; 33(1): 15-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25183450

RESUMO

The field of hematopoietic stem cell (HSC) biology has become increasingly dominated by the pursuit and study of highly purified populations of HSCs. Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self-generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self-renewal and differentiation capacity. Critical studies on unseparated whole bone marrow have definitively shown that long-term engraftable HSCs are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self-renewal capacity, lineage-commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small subpopulation of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Células-Tronco/citologia
9.
J Am Soc Nephrol ; 26(10): 2349-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25901032

RESUMO

Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell-promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares , Células-Tronco Mesenquimais/ultraestrutura , MicroRNAs , Animais , Feminino , Camundongos
10.
BMC Cancer ; 15: 571, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231887

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. METHODS: EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. RESULTS: This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. CONCLUSIONS: Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer.


Assuntos
Proteínas 14-3-3/metabolismo , Colo/metabolismo , Neoplasias do Colo/patologia , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Colo/citologia , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Fenótipo , Regulação para Cima
13.
J Transl Med ; 11: 150, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782682

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) and other aggressive refractory hematological malignancies unresponsive to upfront therapy remain difficult conditions to treat. Often, the focus of therapy is centered on achieving complete remission of disease in order to proceed with a consolidative stem cell transplant. At issue with this paradigm is the multitude of patients who are unable to achieve complete remission with standard chemotherapeutic options. A major benefit of transplantation is the graft versus tumor effect that follows successful engraftment. However, with this graft versus tumor effect comes the risk of graft versus host disease. Therefore, alternative treatment options that utilize immunotherapy while minimizing toxicity are warranted. Herein, we propose a novel treatment protocol in which haploidentical peripheral blood stem cells are infused into patients with refractory hematological malignancies. The end goal of cellular therapy is not engraftment but instead is the purposeful rejection of donor cells so as to elicit a potent immune reaction that appears to break host tumor tolerance. METHODS/DESIGN: The trial is a FDA and institutional Rhode Island Hospital/The Miriam Hospital IRB approved Phase I/II study to determine the efficacy and safety of haploidentical peripheral blood cell infusions into patients with refractory hematological malignancies. The primary objective is the overall response rate while secondary objectives will assess the degree and duration of response as well as safety considerations. Patients with refractory acute leukemias and aggressive lymphomas over the age of 18 are eligible. Donors will be selected amongst family members. Full HLA typing of patients and donors will occur as will chimerism assessments. 1-2x108 CD3+ cells/kilogram will be infused on Day 0 without preconditioning. Patients will be monitored for their response to therapy, in particular for the development of a cytokine release syndrome (CRS) that has been previously described. Blood samples will be taken at the onset, during, and following the cessation of CRS so as to study effector cells, cytokine/chemokine release patterns, and extracellular vesicle populations. Initially, six patients will be enrolled on study to determine safety. Provided the treatment is deemed safe, a total of 25 patients will be enrolled to determine efficacy. DISCUSSION: Cellular Immunotherapy for Refractory Hematological Malignancies provides a novel treatment for patients with relapsed/refractory acute leukemia or aggressive lymphoma. We believe this therapy offers the immunological benefit of bone marrow transplantation without the deleterious effects of myeloablative conditioning regimens and minus the risk of GVHD. Laboratory correlative studies will be performed in conjunction with the clinical trial to determine the underlying mechanism of action. This provides a true bench to bedside approach that should serve to further enrich knowledge of host tumor tolerance and mechanisms by which this may be overcome. TRIAL REGISTRATION: NCT01685606.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia/métodos , Leucemia Mieloide Aguda/terapia , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro , Humanos , Indução de Remissão , Reprodutibilidade dos Testes , Projetos de Pesquisa , Transplante de Células-Tronco/métodos
14.
BMC Cancer ; 13: 463, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24098947

RESUMO

BACKGROUND: A major obstacle in treating colorectal cancer (CRC) is the acquired resistance to chemotherapeutic agents. An important protein in the regulation of cancer cell death and clinical outcome is Raf kinase inhibitor protein (RKIP). In contrast, activated signal transducer and activator of transcription 3 (STAT3) is a protein that promotes tumor cell survival by inhibiting apoptosis and has an important role in cancer progression in many of cancer types. The aim of this study was to evaluate the regulation of RKIP and STAT3 after treatment with clinically relevant chemotherapeutic agents (camptothecin (CPT) and oxaliplatin (OXP)) and the cytokine interleukin-6 (IL-6) in HCT116 colon cancer cells as well as evaluate the association between RKIP and STAT3 with clinical outcome of Stage II colon cancer patients. METHODS: HCT-116 colon cancer cells were treated with CPT, OXP, and IL-6 separately or in combination in a time and dose-dependent manner and examined for phosphorylated and non-phosphorylated RKIP and STAT3 via Western blot analysis. STAT3 transcriptional activity was measured via a luciferase reporter assay in HCT116 cells treated with CPT, IL-6 or transfected with JAK 1, 2 separately or in combination. We extended these observations and determined STAT3 and RKIP/ pRKIP in tumor microarrays (TMA) in stage II colon cancer patients. RESULTS: We demonstrate IL-6-mediated activation of STAT3 occurs in conjunction with the phosphorylation of RKIP in vitro in human colon cancer cells. OXP and CPT block IL-6 mediated STAT3 activation and RKIP phosphorylation via the inhibition of the interaction of STAT3 with gp130. We determined that STAT3 and nuclear pRKIP are significantly associated with poor patient prognosis in stage II colon cancer patients. CONCLUSIONS: In the analysis of tumor samples from stage II colon cancer patients and the human colon carcinoma cell line HCT116, pRKIP and STAT3, 2 proteins potentially involved in the resistance to conventional treatments were detected. The phosphorylation of pRKIP and STAT3 are induced by the cytokine IL-6 and suppressed by the chemotherapeutic drugs CPT and OXP. Therefore, these results suggest that STAT3 and pRKIP may serve as prognostic biomarkers in stage II colon cancer patients and may improve chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Compostos Organoplatínicos/farmacologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Receptor gp130 de Citocina/metabolismo , Feminino , Expressão Gênica , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Oxaliplatina , Fosforilação/efeitos dos fármacos , Prognóstico , Ligação Proteica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Carga Tumoral
15.
Trans Am Clin Climatol Assoc ; 123: 152-66; discussion 166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23303982

RESUMO

The hierarchical models of stem cell biology have been based on work first demonstrating pluripotental spleen-colony-forming units, then showing progenitors with many differentiation fates assayed in in vitro culture; there followed the definition and separation of "stem cells" using monoclonal antibodies to surface epitopes and fluorescent-activated cell characterization and sorting (FACS). These studies led to an elegant model of stem cell biology in which primitive dormant G0 stem cells with tremendous proliferative and differentiative potential gave rise to progressively more restricted and differentiated classes of stem/progenitor cells, and finally differentiated marrow hematopoietic cells. The holy grail of hematopoietic stem cell biology became the purification of the stem cell and the clonal definition of this cell. Most recently, the long-term repopulating hematopoietic stem cell (LT-HSC) has been believed to be a lineage negative sca-1+C-kit+ Flk3- and CD150+ cell. However, a series of studies over the past 10 years has indicated that murine marrow stem cells continuously change phenotype with cell cycle passage. We present here studies using tritiated thymidine suicide and pyronin-Hoechst FACS separations indicating that the murine hematopoietic stem cell is a cycling cell. This would indicate that the hematopoietic stem cell must be continuously changing in phenotype and, thus, could not be purified. The extant data indicate that murine marrow stem cells are continually transiting cell cycle and that the purification has discarded these cycling cells. Further in vivo BrdU studies indicate that the "quiescent" LT-HSC in G0 rapidly transits cycle. Further complexity of the marrow stem cell system is indicated by studies on cell-derived microvesicles showing that they enter marrow cells and transcriptionally alter their cell fate and phenotype. Thus, the stem cell model is a model of continuing changing potential tied to cell cycle and microvesicle exposure. The challenge of the future is to define the stem cell population, not purify the stem cell. We are at the beginning of elucidation of quantum stemomics.


Assuntos
Células da Medula Óssea/citologia , Vesículas Citoplasmáticas/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Animais , Células da Medula Óssea/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células-Tronco Hematopoéticas/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Fenótipo , Células-Tronco/fisiologia
16.
Leukemia ; 36(12): 2784-2792, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307485

RESUMO

Current dogma is that there exists a hematopoietic pluripotent stem cell, resident in the marrow, which is quiescent, but with tremendous proliferative and differentiative potential. Furthermore, the hematopoietic system is essentially hierarchical with progressive differentiation from the pluripotent stem cells to different classes of hematopoietic cells. However, results summarized here indicate that the marrow pluripotent hematopoietic stem cell is actively cycling and thus continually changing phenotype. As it progresses through cell cycle differentiation potential changes as illustrated by sequential changes in surface expression of B220 and GR-1 epitopes. Further data indicated that the potential of purified hematopoietic stem cells extends to multiple other non-hematopoietic cells. It appears that marrow stem cells will give rise to epithelial pulmonary cells at certain points in cell cycle. Thus, it appears that the marrow "hematopoietic" stem cell is also a stem cell for other non-hematopoietic tissues. These observations give rise to the concept of a universal stem cell. The marrow stem cell is not limited to hematopoiesis and its differentiation potential continually changes as it transits cell cycle. Thus, there is a universal stem cell in the marrow which alters its differentiation potential as it progresses through cell cycle. This potential is expressed when it resides in tissues compatible with its differentiation potential, at a particular point in cell cycle transit, or when it interacts with vesicles from that tissue.


Assuntos
Células da Medula Óssea , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hematopoese , Diferenciação Celular , Ciclo Celular
17.
Stem Cell Rev Rep ; 18(7): 2351-2364, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503199

RESUMO

Hematopoietic stem cells express differentiation markers B220 and Gr1 and are proliferative. We have shown that the expression of these entities changes with cell cycle passage. Overall, we conclude that primitive hematopoietic stem cells alter their differentiation potential with cell cycle progression. Murine derived long-term hematopoietic stem cells (LT-HSC) are cycling and thus always changing phenotype. Here we show that over one half of marrow LT-HSC are in the population expressing differentiation epitopes and that B220 and Gr-1 positive populations are replete with LT-HSC after a single FACS separation but if subjected to a second separation these cells no longer contain LT-HSC. However, with second separated cells there is a population appearing that is B220 negative and replete with cycling c-Kit, Sca-1 CD150 positive LT-HSC. There is a 3-4 h interval between the first and second B220 or GR-1 FACS separation during which the stem cells continue to cycle. Thus, the LT-HSC have lost B220 or GR-1 expression as the cells progress through cell cycle, although they have maintained the c-kit, Sca-1 and CD150 stem cells markers over this time interval. These data indicate that cycling stem cells express differentiation epitopes and alter their differentiation potential with cell cycle passage.


Assuntos
Antígenos de Diferenciação , Células-Tronco Hematopoéticas , Animais , Ciclo Celular , Diferenciação Celular/genética , Epitopos , Camundongos
18.
Cardiovasc Res ; 118(16): 3211-3224, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35018410

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS: We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION: By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar Primária Familiar , Hipóxia/complicações , Artéria Pulmonar , Modelos Animais de Doenças
19.
J Biol Chem ; 285(9): 6285-97, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20026604

RESUMO

We tracked the extracellular fate of proteins of pulmonary origin using the technique of stable isotope labeling of amino acids in cell culture (SILAC) in cell-impermeable Transwell culture systems. We find that irradiation to murine lung and lung-derived cells induces their release of proteins that are capable of entering neighboring cells, including primary murine bone marrow cells as well as prostate cancer and hematopoietic cell lines. The functional classification of transferred proteins was broad and included transcription factors, mediators of basic cellular processes and components of the nucleosome remodeling and deacetylase complex, including metastasis associated protein 3 and retinoblastoma-binding protein 7. In further analysis we find that retinoblastoma-binding protein 7 is a transcriptional activator of E-cadherin and that its intercellular transfer leads to decreased gene expression of downstream targets such as N-cadherin and vimentin. SILAC-generated data sets offer a valuable tool to identify and validate potential paracrine networks that may impact relevant biologic processes associated with phenotypic and genotypic signatures of health and disease.


Assuntos
Pulmão/química , Comunicação Parácrina , Proteínas/análise , Proteômica/métodos , Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Marcação por Isótopo/métodos , Pulmão/citologia , Pulmão/efeitos da radiação , Masculino , Camundongos , Comunicação Parácrina/efeitos da radiação , Neoplasias da Próstata/metabolismo , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA