Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(4): e26660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488444

RESUMO

The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/diagnóstico por imagem , Encéfalo , Imageamento por Ressonância Magnética , Cognição
2.
Dev Cogn Neurosci ; 67: 101387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692007

RESUMO

Infant attachment is an antecedent of later socioemotional abilities, which can be adversely affected by preterm birth. The structural integrity of amygdalae and hippocampi may subserve attachment in infancy. We aimed to investigate associations between neonatal amygdalae and hippocampi structure and their whole-brain connections and attachment behaviours at nine months of age in a sample of infants enriched for preterm birth. In 133 neonates (median gestational age 32 weeks, range 22.14-42.14), we calculated measures of amygdala and hippocampal structure (volume, fractional anisotropy, mean diffusivity, neurite dispersion index, orientation dispersion index) and structural connectivity, and coded attachment behaviours (distress, fretfulness, attentiveness to caregiver) from responses to the Still-Face Paradigm at nine months. After multiple comparisons correction, there were no significant associations between neonatal amygdala or hippocampal structure and structural connectivity and attachment behaviours: standardised ß values - 0.23 to 0.18, adjusted p-values > 0.40. Findings indicate that the neural basis of infant attachment in term and preterm infants is not contingent on the structure or connectivity of the amygdalae and hippocampi in the neonatal period, which implies that it is more widely distributed in early life and or that network specialisation takes place in the months after hospital discharge.


Assuntos
Tonsila do Cerebelo , Hipocampo , Apego ao Objeto , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Feminino , Recém-Nascido , Lactente , Vias Neurais , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Comportamento do Lactente/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38960453

RESUMO

BACKGROUND AND OBJECTIVES: The survival rate and patterns of brain injury after very preterm birth are evolving with changes in clinical practices. Additionally, incidental findings can present legal, ethical and practical considerations. Here, we report MRI features and incidental findings from a large, contemporary research cohort of very preterm infants and term controls. METHODS: 288 infants had 3T MRI at term-equivalent age: 187 infants born <32 weeks without major parenchymal lesions, and 101 term-born controls. T1-weighted, T2-weighted and susceptibility-weighted imaging were used to classify white and grey matter injury according to a structured system, and incidental findings described. RESULTS: Preterm infants: 34 (18%) had white matter injury and 4 (2%) had grey matter injury. 51 (27%) infants had evidence of intracranial haemorrhage and 34 (18%) had punctate white matter lesions (PWMLs). Incidental findings were detected in 12 (6%) preterm infants. Term infants: no term infants had white or grey matter injury. Incidental findings were detected in 35 (35%); these included intracranial haemorrhage in 22 (22%), periventricular pseudocysts in 5 (5%) and PWMLs in 4 (4%) infants. From the whole cohort, 10 (3%) infants required referral to specialist services. CONCLUSIONS: One-fifth of very preterm infants without major parenchymal lesions have white or grey matter abnormalities at term-equivalent age. Incidental findings are seen in 6% of preterm and 35% of term infants. Overall, 3% of infants undergoing MRI for research require follow-up due to incidental findings. These data should help inform consent procedures for research and assist service planning for centres using 3T neonatal brain MRI for clinical purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA