Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Chem Rev ; 123(16): 9720-9785, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37459506

RESUMO

Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.


Assuntos
Fármacos Fotossensibilizantes , Neoplasias Cutâneas , Humanos , Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta , Luz
2.
Photochem Photobiol Sci ; 18(8): 1972-1981, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259994

RESUMO

Betalains are natural plant pigments found in certain plants belonging to the order Caryophyllales. This work presents theoretical calculations on the excited state properties of three betalains: betanin, an almost non-fluorescent natural betacyanin; indicaxanthin, a weakly fluorescent natural betaxanthin; and cBeet120, a synthetic betaxanthin fluorescence probe that is also weakly fluorescent. Calculations at the algebraic diagrammatic construction (ADC (2)) level of theory, combined with the conductor-like screening model (COSMO) to simulate solvent effects, predict absorption spectra in good agreement with experiment for all three of these betalains. Several distinct theoretical approaches identify torsions of the molecular geometry that can lead to conical intersections between the excited singlet (S1) and ground state (S0) potential surfaces and identify probable geometries at the minimum on the crossing seam (MXS). The present results thus emphasize the central role played by torsional modes in determining the fluorescence properties of natural betalains and of most synthetic betalain analogs as well. A direct implication of the results is that the fluorescence quantum yields of natural or synthetic betalains can potentially be enhanced by introducing structural modifications that permit the molecule to avoid these MXS geometries and/or by incorporation into a more rigid environment that hinders the specific bond rotations involved in the non-radiative relaxation of the excited state.


Assuntos
Betalaínas/química , Fluorescência , Corantes Fluorescentes/química , Betalaínas/síntese química , Caryophyllales/química , Teoria da Densidade Funcional , Corantes Fluorescentes/síntese química , Conformação Molecular
3.
Photochem Photobiol Sci ; 18(1): 45-53, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462141

RESUMO

There is increasing interest in using natural colorants like anthocyanins in cosmetics, food and pharmaceuticals as replacements for synthetic colorants. During the maturation of red wines, the anthocyanin pigments contained in grapes are transformed via reaction with copigments and metabolic products into pyranoanthocyanins, responsible in part for the final color of the wine. In order to understand structural effects on the absorption spectra of pyranoanthocyanins, the calculated excited state energies and spectroscopic states of a series of substitued pyranoflavylium cation analogs of pyranoanthocyanins have been compared to experimental spectroscopic data for these compounds. The vertical excitation energies, calculated by using the ADC(2) approach, gave excellent agreement with the experimental UV-Vis spectra and the nature of the lowest excited state correlates with the observed photophysical behavior in solution. The present results thus provide a basis for the design of new pyranoflavylium chromophores with the desired colors and photophysics, as well as for understanding the analogous properties of natural pyranoanthocyanin pigments in red wine.

4.
Photochem Photobiol Sci ; 18(7): 1750-1760, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107486

RESUMO

Flavylium cations serve as models for the chemical and photochemical reactivity of anthocyanins, the natural plant pigment responsible for many of the red, blue and purple colors of fruits and flowers. Likewise, pyranoflavylium cations serve as models of the fundamental chromophoric moiety of pyranoanthocyanins, molecules that can form from reactions of grape anthocyanins in red wines during their maturation. In the present work, hybrid pigments are prepared by the adsorption of a series of five synthetic flavylium cations (FL) and five synthetic pyranoflavylium cations (PFL) on sepiolite clay (SEP). The FL are smaller in size than the PFL, but both can in principle fit into the tunnels and/or external grooves (with dimensions of 3.7 × 10.6 Å) of SEP. Measurements of the fluorescence quantum yields of the adsorbed dyes indicate that they are at least as fluorescent as in acidic acetonitrile solution, and in a few cases substantially more fluorescent. The observation of biexponential fluorescence decays is consistent with emission from dye molecules adsorbed at two distinct sites, presumably tunnels and grooves. These hybrid materials also have improved properties in terms of stability of the color in contact with pH 10 aqueous solution and resistance to thermal degradation of the dye. SEP thus appears to be a promising substrate for the development of highly fluorescent flavylium or pyranoflavylium cation-derived hybrid pigments with improved color and thermal stability.

5.
An Acad Bras Cienc ; 90(1 Suppl 1): 681-695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742202

RESUMO

An overview is provided of the status of research at the frontiers of investigation of the chemistry and photochemistry of two classes of natural plant pigments, the anthocyanins and the betalains, as well as of the pyranoanthocyanin pigments formed from anthocyanins during the maturation of red wine. Together, anthocyanins and betalains are responsible for almost all of the red, purple and blue colors of fruits and flowers and anthocyanins and pyranoanthocyanins are major contributors to the color of red wines. All three types of pigments are cationic below about pH 3, highly colored, non-toxic, reasonably soluble in water or alcohol and fairly stable to light. They exhibit good antioxidant or antiradical activity and, as part of our diet, confer a number of important health benefits. Systematic studies of model compounds containing the basic chromophoric groups of these three types of pigments are providing a deeper understanding of the often complex chemistry and photochemistry of these pigments and their relationship to the roles in vivo of these pigments in plants. These natural pigments are currently being exploited as starting materials for the preparation of novel semi-synthetic dyes, pigments and fluorescence probes.


Assuntos
Antocianinas/química , Betalaínas/química , Flores/química , Frutas/química , Pigmentação , Vinho , Antocianinas/isolamento & purificação , Betalaínas/isolamento & purificação , Cor
6.
Photochem Photobiol Sci ; 15(6): 752-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27123548

RESUMO

Host-guest complexation with cucurbit[7]uril of anthocyanin model compounds in which acid-base equilibria are blocked resulted in essentially complete stabilization of their color. The color protection is a thermodynamic effect and establishes a strategy to stabilize these colored compounds at pH values of interest for practical applications.


Assuntos
Antocianinas/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Equilíbrio Ácido-Base , Cor , Estrutura Molecular , Processos Fotoquímicos , Análise Espectral , Termodinâmica , Água/química
7.
Photochem Photobiol Sci ; 15(6): 832, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216443

RESUMO

Correction for 'Cucurbit[7]uril inclusion complexation as a supramolecular strategy for color stabilization of anthocyanin model compounds' by Barbara Held, et al., Photochem. Photobiol. Sci., 2016, DOI: 10.1039/c6pp00060f.

8.
J Sci Food Agric ; 96(5): 1580-4, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25974279

RESUMO

BACKGROUND: Due to contamination of the environment by pesticides and their mishandling, there is the need for treatment of contaminated sites and correct disposal of materials containing them. Thus, studies with advanced oxidation processes are expanding and can determine the rate constant of the hydroxyl radical with organic compounds of great importance in environmental contamination. In this context, the use of laser flash photolysis has been shown to be viable for the determination of these constants. RESULTS: The reaction rate constants of different pesticides with HO(•) in degassed acetonitrile have been determined. They were 1.6 × 10(9) M(-1) s(-1), 0.6 × 10(9) M(-1) s(-1), 1.2 × 10(9) M(-1) s(-1), 2.4 × 10(9) M(-1) s(-1) and 2.2 × 10(9) M(-1) s(-1) for the pesticides carbaryl, propoxur, fenoxycarb, ethoxysulfuron and chlorimuron-ethyl, respectively. These values are about an order of magnitude smaller than the diffusion controlled rate and correlate with the relative rates of disappearance of the pesticides in the photo-Fenton reaction in water. CONCLUSION: The correlation of the relative rate constants determined by laser flash photolysis with the relative rates of photo-Fenton degradation of the pesticides is compelling evidence for the participation of the hydroxyl radical in the degradation of these pesticides in the latter system.


Assuntos
Radical Hidroxila/química , Lasers , Praguicidas/química , Fotólise , Cinética , Estrutura Molecular
9.
J Phys Chem A ; 118(45): 10448-55, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24925753

RESUMO

Synthetic flavylium salts like the 7-hydroxy-4-methylflavylium (HMF) cation have been used as prototypes to study the chemistry and photochemistry of anthocyanins, the major group of water-soluble pigments in the plant kingdom. In this work, a combination of fluorescence upconversion with femtosecond time resolution and time-correlated single photon counting (TCSPC) with picosecond time resolution have been employed to investigate in details the excited-state proton transfer (ESPT) of HMF in water and in binary water/1,4-dioxane mixtures. TCSPC measurements as a function of temperature provide activation parameters for all of the individual rate constants involved in the proton transfer, including those for dissociation and recombination of the geminate excited base-proton pair (A*···H(+)) that can be detected in the water/dioxane mixtures (but not in water). Unlike the other rate constants, the deprotonation rate constant kd shows a non-Arrhenius dependence on temperature in both water and water/dioxane mixtures. At low temperatures kd is close to the dielectric relaxation rate of the solvent with a barrier of ca. 8 kJ mol(-1), suggesting that the solvent reorganization is the rate-limiting step. At higher temperatures (>30 °C) the proton transfer process is nearly barrierless and solvent-dependent. Fluorescence upconversion results in H2O, D2O, and water/dioxane mixtures confirm the two-step model for the ESPT of HMF and provide additional details of the early events prior to the onset of proton transfer, attributed to conformational relaxation and solvent reaccommodation around the initially formed excited state. The results are consistent with DFT calculations that indicate that charge redistribution occurs after rather than prior to the onset of the ESPT process.

10.
Molecules ; 19(5): 5806-20, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806580

RESUMO

Because of the need for more effective and less harmful antifungal therapies, and interest in the synthesis of new carboximidamides, the goal of this study was to determine the antifungal and anti-enzyme activities of some new pyrazole carboximidamides and their cytotoxicity. For this purpose, tests were performed to evaluate: minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC); production of proteinases and phospholipase, and cytotoxicity of the extracts. Data were analyzed by ANOVA and Tukey Tests (α = 5%). The results were: MIC and MFC ≥ 62.5 µg/mL (C. albicans, C. parapsilosis, C. famata, C. glabrata, and Rhodotorula mucillaginosa) and MIC and MFC ≥ 15.6 µg/mL (C. lipolytica). The values of proteinase and phospholipase (Pz) of C. albicans before and after exposure to the compounds were: 0.6 (±0.024) and 0.2 (±0.022) and 0.9 (±0.074) and 0.3 (±0.04), respectively. These proteinase results were not significant (p = 0.69), but those of phospholipase were (p = 0.01), and 15.6 µg/mL was the most effective concentration. The cytotoxicity means were similar among the tests (p = 0.32). These compounds could be useful as templates for further development through modification or derivatization to design more potent antifungal agents. Data from this study provide evidence that these new pyrazole formulations could be an alternative source for the treatment of fungal infections caused by Candida. However, a specific study on the safety and efficacy of these in vivo and clinical trials is still needed, in order to evaluate the practical relevance of the in vitro results.


Assuntos
Antifúngicos/administração & dosagem , Candida/efeitos dos fármacos , Micoses/tratamento farmacológico , Pirazóis/síntese química , Antifúngicos/síntese química , Antifúngicos/química , Candida/patogenicidade , Inibidores Enzimáticos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Micoses/patologia , Pirazóis/administração & dosagem , Pirazóis/química
11.
Photochem Photobiol Sci ; 12(5): 902-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471212

RESUMO

We wish to report a powerful methodology for analysis and interpretation of complex fluorescence decays and other kinetic data, based on the addition of convolution analysis to standard (individual and global) analysis. The method was applied to cases involving excited state proton transfer of flavylium salts in water, in water-1,4-dioxane mixtures and in micellar solutions of sodium dodecyl sulfate (SDS). The results clearly support the proposal of the intermediacy of a proton-base geminate pair in environments other than water.

12.
Photochem Photobiol ; 99(2): 732-741, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35944220

RESUMO

Hydroxypyranoflavylium (HPF) cations are synthetic analogs possessing the same basic chromophore as the pyranoanthocyanins that form during the maturation of red wine. HPF cations absorb strongly in the visible spectral region, and most are fluorescent, triplet-sensitize singlet oxygen formation in solution and are strong photooxidants, properties that are desirable in a sensitizer for photodynamic therapy (PDT). The results of this study demonstrate that several simple HPF dyes can indeed function as PDT sensitizers. Of the eight HPF cations investigated in this work, four were phototoxic to a human cervical adenocarcinoma cell line (HeLa) at the 1-10 µmol dm-3 level, while only one of the eight compounds showed noticeable cytotoxicity in the dark. Neither a Type I nor a Type II mechanism can adequately rationalize the differences in phototoxicity of the compounds. Colocalization experiments with the most phototoxic compound demonstrated the affinity of the dye for both the mitochondria and lysosomes of HeLa cells. The fact that relatively modest structural differences, e.g., the exchange of an electron-donating substituent for an electron-withdrawing substituent, can cause profound differences in the phototoxicity, together with the relatively facile synthesis of substituted HPF cations, makes them interesting candidates for further evaluation as PDT sensitizers.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Células HeLa , Corantes/química , Oxigênio Singlete/metabolismo
13.
Chemistry ; 18(12): 3736-44, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22334328

RESUMO

The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage.


Assuntos
Antocianinas/química , Plantas/química , Acilação , Luz , Fotoquímica , Raios Ultravioleta
14.
Langmuir ; 28(3): 1758-64, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22176674

RESUMO

Addition of salts, especially perchlorates, to zwitterionic micelles of SB3-14, C(14)H(29)NMe(2)(+)(CH(2))(3)SO(3)(-), induces anionic character and uptake of H(3)O(+) by SB3-14 micelles. Thus, the addition of alkali metal perchlorates accelerates the acid hydrolysis of 2-(p-heptoxyphenyl)-1,3-dioxolane, HPD, in the presence of SB3-14 micelles, which depends on the local proton concentration at the micelle surface. The addition of metal chlorides to solutions of such perchlorate-modified SB3-14 micelles decreases both the negative zeta potential of the micelles and the observed rate constant for acid hydrolysis of HPD. The effect of the monovalent cations Li(+), Na(+), and K(+) is smaller than that of the divalent cations Be(2+), Mg(2+), and Ca(2+), and much smaller than that of the trivalent cations Al(3+), La(3+), and Er(3+). The major factor responsible for this cation valence dependence of these effects is shown to be electrostatic in nature, reflecting the strong dependence of the micellar surface potential on the cation valence. The fact that the salt effects are not identical after correction for the electrostatic effects indicates that additional secondary nonelectrostatic effects may contribute as well.

15.
J Biochem Mol Toxicol ; 26(4): 155-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22447704

RESUMO

The Biginelli reaction is a multicomponent reaction involving the condensation between an aldehyde, a ß-ketoester, and urea or thiourea, in the presence of an acid catalyst, producing dihydropyrimidinones (DHPMs). Owing to their important pharmacological properties, the DHPMs have been studied by many authors. However, most of the methodologies used for the synthesis of these compounds require drastic reaction conditions. In the current study, we report an efficient and clean procedure for preparing DHPMs by the use of citric acid or tartaric acid as a promoter of the Biginelli synthesis in ethanol as solvent. In addition, we have evaluated the antioxidant capacity of the compounds synthesized by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and the thiobarbituric acid-reactive species test. Two compounds presented antioxidant activity and also reduced lipid peroxidation at concentrations of 200 and 300 µM. In summary, we report an environmentally friendly procedure for the preparation of DHPMs and demonstrate the antioxidant capacity of some of the compounds.


Assuntos
Antioxidantes/síntese química , Ácido Cítrico/química , Pirimidinonas/síntese química , Tartaratos/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Etanol/química , Peroxidação de Lipídeos/efeitos dos fármacos , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Ratos Wistar , Solventes/química
16.
J Colloid Interface Sci ; 611: 39-45, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34929437

RESUMO

One of the most intriguing aspects of zwitterionic surfactant micelles is their propensity to exhibit selectivity in the binding of the anions of added salts. In this work we examine the thermodynamics of the interaction of the strongly bound perchlorate ion and the more weakly bound bromide ion with micelles of N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB3-14) in aqueous solution employing enthalpies derived from isothermal titration calorimetry combined with Gibbs free energies derived from literature data for the binding equilibria. In both cases, the binding is exothermic and enthalpy driven, but entropically unfavorable, with only modest changes in the Gibbs free energy as a function of the extent of anion binding. Likewise, perchlorate ion binding was found to have little or no effect on the aggregation numbers of SB3-14 micelles determined by time-resolved fluorescence quenching of pyrene by the N-hexadecylpyridinium cation. The results are interpreted within the context of the factors involved in the ion-pairing between the anions and the positive charge center of the zwitterion headgroup and the interplay between electrostatics, solvent reorganization and a net loss of translational degrees of freedom that accompany anion binding.


Assuntos
Micelas , Ânions , Betaína/análogos & derivados , Calorimetria , Termodinâmica
17.
Photochem ; 2(1): 9-31, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35075451

RESUMO

Natural dyes and pigments offer incomparable diversity of structures and functionalities, making them an excellent source of inspiration for the design and development of synthetic chromophores with a myriad of emerging properties. Formed during maturation of red wines, pyranoanthocyanins are electron-deficient cationic pyranoflavylium dyes with broad absorption in the visible spectral region and pronounced chemical and photostability. Herein, we survey the optical and electrochemical properties of synthetic pyranoflavylium dyes functionalized with different electron-donating and electron-withdrawing groups, which vary their reduction potentials over a range of about 400 mV. Despite their highly electron-deficient cores, the exploration of pyranoflavyliums as photosensitizers has been limited to the "classical" n-type dye-sensitized solar cells (DSSCs) where they act as electron donors. In light of their electrochemical and spectroscopic properties, however, these biomimetic synthetic dyes should prove to be immensely beneficial as chromophores in p-type DSSCs, where their ability to act as photooxidants, along with their pronounced photostability, can benefit key advances in solar-energy science and engineering.

18.
J Phys Chem A ; 115(40): 10988-95, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21870793

RESUMO

The intermediacy of the geminate base-proton pair (A*···H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH(+)* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base-proton pair A*···H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*···H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec), of A*···H(+)) from the diffusion controlled rates (dissociation, k(diss), and formation, k(diff)[H(+)], of A*···H(+)), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).


Assuntos
Dioxanos/química , Flavonoides/química , Propilenoglicóis/química , Prótons , Termodinâmica , Água/química , Flavonoides/síntese química , Sais/química , Espectrometria de Fluorescência , Fatores de Tempo
19.
J Colloid Interface Sci ; 588: 456-468, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33429342

RESUMO

Enzymes are highly significant catalysts, essential to biological systems, and a source of inspiration for the design of artificial enzymes. Although many models have been developed describing enzymatic catalysis, a deeper understanding of these biocatalysts remains a major challenge. Herein we detail the formation, characterization, performance, and catalytic mechanisms of a series of bio-inspired supramolecular polymer/surfactant complexes acting as artificial enzymes. The supramolecular complexes were characterized and exhibited exceptional catalytic efficiency for the dephosphorylation of an activated phosphate diester, the reaction rate being highly responsive to: (a) pH, (b) surfactant concentration, and (c) the length of the hydrophobic chain of the surfactant. Under optimal conditions (at pH > 8 for the more hydrophobic systems and at pre-micellar concentrations), enzyme-like rate enhancements of up to 6.0 × 109-fold over the rate of the spontaneous hydrolysis reaction in water were verified. The catalytic performance is a consequence of synergy between the hydrophobicity of the aggregates and the catalytic functionalities of the polymer and the catalytic mechanism is modulated by the nature of the hydrophobic pockets of these catalysts, changing from a general base mechanism to a nucleophilic mechanism as the hydrophobicity increases. Taken as a whole, the present results provide fundamental insights, through an understandable model, which are highly relevant to the design of novel bioinspired enzyme surrogates with multifunctional potentialities for future practical applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polímeros , Tensoativos , Catálise , Hidrólise
20.
Bioorg Med Chem Lett ; 20(20): 6001-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20826088

RESUMO

Newly designed 2,1,3-benzothiadiazole-containing fluorescent probes with four excited state intramolecular proton transfer (ESIPT) sites were successfully tested in live cell-imaging assays using a confluent monolayer of human stem-cells (tissue). All tested dyes were compared with the commercially available DAPI and gave far better results.


Assuntos
Corantes Fluorescentes/análise , Células-Tronco/citologia , Tiadiazóis/análise , Sobrevivência Celular , Células Cultivadas , DNA de Cadeia Simples/análise , Corantes Fluorescentes/química , Humanos , Espectrometria de Fluorescência , Tiadiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA