RESUMO
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
Assuntos
Quinases Ciclina-Dependentes , Fosfoproteínas , Precursores de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Cromatina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Quinolonas/farmacologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Treonina/metabolismoRESUMO
CDK12 is a kinase associated with elongating RNA polymerase II (RNAPII) and is frequently mutated in cancer. CDK12 depletion reduces the expression of homologous recombination (HR) DNA repair genes, but comprehensive insight into its target genes and cellular processes is lacking. We use a chemical genetic approach to inhibit analog-sensitive CDK12, and find that CDK12 kinase activity is required for transcription of core DNA replication genes and thus for G1/S progression. RNA-seq and ChIP-seq reveal that CDK12 inhibition triggers an RNAPII processivity defect characterized by a loss of mapped reads from 3'ends of predominantly long, poly(A)-signal-rich genes. CDK12 inhibition does not globally reduce levels of RNAPII-Ser2 phosphorylation. However, individual CDK12-dependent genes show a shift of P-Ser2 peaks into the gene body approximately to the positions where RNAPII occupancy and transcription were lost. Thus, CDK12 catalytic activity represents a novel link between regulation of transcription and cell cycle progression. We propose that DNA replication and HR DNA repair defects as a consequence of CDK12 inactivation underlie the genome instability phenotype observed in many cancers.
Assuntos
Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Células HCT116 , Humanos , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismoRESUMO
In this work, the interaction of six natural benzo[c]phenanthridine alkaloids (macarpine, sanguilutine, sanguirubine, chelerythrine, sanguinarine and chelirubine) with parallel and antiparallel G-quadruplex DNA structures was studied. HT22 corresponding to the end of human telomeres and the modified promoter oncogene c-kit21 and Pu22 sequences have been used. Spectroscopically-monitored melting experiments and fluorescence titrations, competitive dialysis and nuclear magnetic resonance spectroscopy were used for this purpose. The results showed that these alkaloids stabilized G-quadruplex structures in terms of increments of Tm values (from 15 to 25 °C) with high selectivity over duplexes and unfolded DNA. The mode of binding was mainly by stacking on the terminal G-tetrads with stoichiometries of 1 : 2 (DNA : ligand). The presence of non-specific electrostatic interactions was also observed. Overall, the results pointed to a strong stabilization of G-quadruplex structures by these alkaloids.
RESUMO
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during the S phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S phase. Moreover, its amino-terminal region binds FLASH, an RDH-specific 3'-end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the carboxy-terminal domain of RNA polymerase II (RNAPII), which is initiated when RNAPII reaches the middle of RDH genes and is required for further RNAPII elongation and 3'-end processing. CDK11 depletion leads to decreased number of cells in S phase, likely owing to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for the growth of many cancers.
Assuntos
Quinases Ciclina-Dependentes/metabolismo , Histonas/genética , Transcrição Gênica , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cromatina/genética , Cromatina/metabolismo , Quinases Ciclina-Dependentes/genética , Replicação do DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Fosforilação , RNA/genética , RNA/metabolismo , Fase S , Serina/metabolismoRESUMO
Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1).
Assuntos
Alcaloides/química , Benzofenantridinas/química , DNA/química , Solventes/químicaRESUMO
Extracts from Himalayan herb Dicranostigma lactucoides containing alkaloid chelirubine have been used for centuries in Chinese herbal medicine. We have found a new utilization for the alkaloid: it can be used as a DNA fluorescent probe showing blue (free form) and red (intercalated to DNA) luminescence emission after irradiation by near-UV light. Besides quantification of DNA (LOD = 6 ng ml(-1)) it can also be used as a supravital cell probe because chelirubine molecules can effectively enter into the living cell through the cell membrane.