Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 4413-4426, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297643

RESUMO

X-ray multi-projection imaging (XMPI) has the potential to provide rotation-free 3D movies of optically opaque samples. The absence of rotation enables superior imaging speed and preserves fragile sample dynamics by avoiding the centrifugal forces introduced by conventional rotary tomography. Here, we present our XMPI observations at the ID19 beamline (ESRF, France) of 3D dynamics in melted aluminum with 1000 frames per second and 8 µm resolution per projection using the full dynamical range of our detectors. Since XMPI is a method under development, we also provide different tests for the instrumentation of up to 3000 frames per second. As the high-brilliance of 4th generation light-sources becomes more available, XMPI is a promising technique for current and future X-ray imaging instruments.

2.
BMC Oral Health ; 24(1): 396, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549137

RESUMO

BACKGROUND: The stability of implant-abutment connection is crucial to minimize mechanical and biological complications. Therefore, an assessment of the microgap behavior and abutment displacement in different implant-abutment designs was performed. METHODS: Four implant systems were tested, three with a conical implant-abutment connection based on friction fit and a cone angle < 12 ° (Medentika, Medentis, NobelActive) and a system with an angulated connection (< 40°) (Semados). In different static loading conditions (30 N - 90º, 100 N - 90º, 200 N - 30º) the microgap and abutment displacement was evaluated using synchrotron-based microtomography and phase-contrast radioscopy with numerical forward simulation of the optical Fresnel propagation yielding an accuracy down to 0.1 µm. RESULTS: Microgaps were present in all implant systems prior to loading (0.15-9 µm). Values increased with mounting force and angle up to 40.5 µm at an off axis loading of 100 N in a 90° angle. CONCLUSIONS: In contrast to the implant-abutment connection with a large cone angle (45°), the conical connections based on a friction fit (small cone angles with < 12°) demonstrated an abutment displacement which resulted in a deformation of the outer implant wall. The design of the implant-abutment connection seems to be crucial for the force distribution on the implant wall which might influence peri-implant bone stability.


Assuntos
Implantes Dentários , Síncrotrons , Humanos , Projeto do Implante Dentário-Pivô , Simulação por Computador , Dente Suporte , Análise do Estresse Dentário
3.
J Synchrotron Radiat ; 30(Pt 1): 192-199, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601937

RESUMO

The investigation of lithium-ion battery failures is a major challenge for personnel and equipment due to the associated hazards (thermal reaction, toxic gases and explosions). To perform such experiments safely, a battery abuse-test chamber has been developed and installed at the microtomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF). The chamber provides the capability to robustly perform in situ abuse tests through the heat-resistant and gas-tight design for flexible battery geometries and configurations, including single-cell and multi-cell assemblies. High-speed X-ray imaging can be complemented by supplementary equipment, including additional probes (voltage, pressure and temperature) and thermal imaging. Together with the test chamber, a synchronization graphical user interface was developed, which allows an initial interpretation by time-synchronous visualization of the acquired data. Enabled by this setup, new meaningful insights can be gained into the internal processes of a thermal runaway of current and future energy-storage devices such as lithium-ion cells.

4.
Opt Lett ; 48(23): 6271-6274, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039244

RESUMO

X ray fluorescence ghost imaging (XRF-GI) was recently demonstrated for x ray lab sources. It has the potential to reduce the acquisition time and deposited dose by choosing their trade-off with a spatial resolution while alleviating the focusing constraints of the probing beam. Here, we demonstrate the realization of synchrotron-based XRF-GI: we present both an adapted experimental setup and its corresponding required computational technique to process the data. This extends the above-mentioned potential advantages of GI to synchrotron XRF imaging. In addition, it enables new strategies to improve resilience against drifts at all scales and the study of previously inaccessible samples, such as liquids.

5.
Front Zool ; 20(1): 26, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553687

RESUMO

Various chalcidoid wasps can actively steer their terebra (= ovipositor shaft) in diverse directions, despite the lack of terebral intrinsic musculature. To investigate the mechanisms of these bending and rotational movements, we combined microscopical and microtomographical techniques, together with videography, to analyse the musculoskeletal ovipositor system of the ectoparasitoid pteromalid wasp Lariophagus distinguendus (Förster, 1841) and the employment of its terebra during oviposition. The ovipositor consists of three pairs of valvulae, two pairs of valvifers and the female T9 (9th abdominal tergum). The paired 1st and the 2nd valvulae are interlocked via the olistheter system, which allows the three parts to slide longitudinally relative to each other, and form the terebra. The various ovipositor movements are actuated by a set of nine paired muscles, three of which (i.e. 1st valvifer-genital membrane muscle, ventral 2nd valvifer-venom gland reservoir muscle, T9-genital membrane muscle) are described here for the first time in chalcidoids. The anterior and posterior 2nd valvifer-2nd valvula muscles are adapted in function. (1) In the active probing position, they enable the wasps to pull the base of each of the longitudinally split and asymmetrically overlapping halves of the 2nd valvula that are fused at the apex dorsally, thus enabling lateral bending of the terebra. Concurrently, the 1st valvulae can be pro- and retracted regardless of this bending. (2) These muscles can also rotate the 2nd valvula and therefore the whole terebra at the basal articulation, allowing bending in various directions. The position of the terebra is anchored at the puncture site in hard substrates (in which drilling is extremely energy- and time-consuming). A freely steerable terebra increases the chance of contacting a potential host within a concealed cavity. The evolution of the ability actively to steer the terebra can be considered a key innovation that has putatively contributed to the acquisition of new hosts to a parasitoid's host range. Such shifts in host exploitation, each followed by rapid radiations, have probably aided the evolutionary success of Chalcidoidea (with more than 500,000 species estimated).

6.
J Struct Biol ; 213(1): 107658, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33207268

RESUMO

Mammalian teeth have to sustain repetitive and high chewing loads without failure. Key to this capability is the periodontal ligament (PDL), a connective tissue containing a collagenous fibre network which connects the tooth roots to the alveolar bone socket and which allows the teeth to move when loaded. It has been suggested that rodent molars under load experience a screw-like downward motion but it remains unclear whether this movement also occurs in primates. Here we use synchroton micro-computed tomography paired with an axial loading setup to investigate the form-function relationship between tooth movement and the morphology of the PDL space in a non-human primate, the mouse lemur (Microcebus murinus). The loading behavior of both mandibular and maxillary molars showed a three-dimensional movement with translational and rotational components, which pushes the tooth into the alveolar socket. Moreover, we found a non-uniform PDL thickness distribution and a gradual increase in volumetric proportion of the periodontal vasculature from cervical to apical. Our results suggest that the PDL morphology may optimize the three-dimensional tooth movement to avoid high stresses under loading.


Assuntos
Dente Molar/fisiologia , Primatas/fisiologia , Animais , Feminino , Humanos , Imageamento Tridimensional/métodos , Camundongos , Ligamento Periodontal/fisiologia , Estresse Mecânico , Síncrotrons , Técnicas de Movimentação Dentária/métodos , Microtomografia por Raio-X/métodos
7.
J Synchrotron Radiat ; 27(Pt 4): 1015-1022, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566011

RESUMO

Bonding of resin composite fillings, for example following root-canal treatment, is a challenge because remaining gaps grow and lead to failure. Here, phase-contrast-enhanced micro-computed tomography (PCE-CT) is used to explore methods of non-destructive quantification of the problem, so that countermeasures can be devised. Five human central incisors with damaged crowns were root-filled followed by restoration with a dental post. Thereafter, the crowns were rebuilt with a resin composite that was bonded conventionally to the tooth with a dental adhesive system (Futurabond U). Each sample was imaged by PCE-CT in a synchrotron facility (ID19, European Synchrotron Radiation Facility) with a pixel size of 650 nm. The reconstructed datasets from each sample were segmented and analysed in a semi-automated manner using ImageJ. PCE-CT at sub-micrometre resolution provided images with an impressive increased contrast and detail when compared with laboratory micro-computed tomography. The interface between the dental adhesive and the tooth was often strongly disrupted by the presence of large debonded gaps (on average 34% ± 15% on all surfaces). The thickness of the gaps spanned 2 µm to 16 µm. There was a large variability in the distribution of gaps within the bonding area in each sample, with some regions around the canal exhibiting up to 100% discontinuity. Although only several micrometres thick, the extensive wide gaps may serve as gateways to biofilm leakage, leading to failure of the restorations. They can also act as stress-raising `cracks' that are likely to expand over time in response to cyclic mechanical loading as a consequence of mastication. The observations here show how PCE-CT can be used as a non-destructive quantitative tool for understanding and improving the performance of clinically used bonded dental restorations.


Assuntos
Resinas Compostas/química , Restauração Dentária Permanente , Tratamento do Canal Radicular , Dente não Vital/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Colagem Dentária , Materiais Dentários/química , Humanos , Técnicas In Vitro , Incisivo
9.
Langmuir ; 35(8): 3038-3047, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30646687

RESUMO

Laser ablation of gold in liquids with nanosecond laser pulses in aqueous solutions of inorganic electrolytes and macromolecular ligands for gold nanoparticle size quenching is probed inside the laser-induced cavitation bubble by in situ X-ray multicontrast imaging with a Hartmann mask (XHI). It is found that (i) the in situ size quenching power of sodium chloride (NaCl) in comparison to the ablation in pure water can be observed by the scattering contrast from XHI already inside the cavitation bubble, while (ii) for polyvinylpyrrolidone (PVP) as a macromolecular model ligand an in situ size quenching cannot be observed. Complementary ex situ characterization confirms the overall size quenching ability of both additive types NaCl and PVP. The macromolecular ligand as well as its monomer N-vinylpyrrolidone (NVP) are mainly effective for growth quenching of larger nanoparticles on later time scales, leading to the conclusion of an alternative interaction mechanism with ablated nanoparticles compared to the electrolyte NaCl, probably outside of the cavitation bubble, in the surrounding liquid phase. While monomer and polymer have similar effects on the particle properties, with the polymer being slightly more efficient, only the polymer is effective against hydrodynamic aggregation.

10.
Appl Opt ; 57(18): 5004-5010, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117959

RESUMO

A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable of capturing-for the first time-hundreds of sequential x-ray pulses in 16-bunch mode at the European Synchrotron Radiation Facility, recording at 5.68 Mfps over dozens of microseconds, with an effective exposure of 100 ps. The versatile multiplex camera construction of the system allows for various arrangements, including different scintillator configurations, and simultaneous imaging with different resolutions and regions of interest. Image results from a gas gun impact experiment, in which an additive manufactured aluminum lattice was dynamically compressed, is presented as a demonstration of the system's capabilities.

11.
Opt Express ; 25(12): 13857-13871, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788829

RESUMO

Third generation synchrotron light sources offer high photon flux, partial spatial coherence, and ~10-10 s pulse widths. These enable hard X-ray phase-contrast imaging (XPCI) with single-bunch temporal resolutions. In this work, we exploited the MHz repetition rates of synchrotron X-ray pulses combined with indirect X-ray detection to demonstrate the potential of XPCI with millions of frames per second multiple-frame recording. This allows for the visualization of aperiodic or stochastic transient processes which are impossible to be realized using single-shot or stroboscopic XPCI. We present observations of various phenomena, such as crack tip propagation in glass, shock wave propagation in water and explosion during electric arc ignition, which evolve in the order of km/s (µm/ns).

12.
J Synchrotron Radiat ; 23(Pt 4): 1030-4, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359153

RESUMO

A hard X-ray transparent triaxial deformation apparatus, called HADES, has been developed by Sanchez Technologies and installed on the microtomography beamline ID19 at the European Radiation Synchrotron Facility (ESRF). This rig can be used for time-lapse microtomography studies of the deformation of porous solids (rocks, ceramics, metallic foams) at conditions of confining pressure to 100 MPa, axial stress to 200 MPa, temperature to 250°C, and controlled aqueous fluid flow. It is transparent to high-energy X-rays above 60 keV and can be used for in situ studies of coupled processes that involve deformation and chemical reactions. The rig can be installed at synchrotron radiation sources able to deliver a high-flux polychromatic beam in the hard X-ray range to acquire tomographic data sets with a voxel size in the range 0.7-6.5 µm in less than two minutes.

13.
J Synchrotron Radiat ; 23(Pt 3): 685-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140147

RESUMO

The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

14.
J Synchrotron Radiat ; 23(Pt 5): 1202-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577776

RESUMO

X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating-based interferometry and propagation-based phase contrast combined with single-distance phase retrieval applied to a non-homogeneous sample is presented (acquired at beamline ID19-ESRF). It is shown that grating-based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.

15.
Phys Rev Lett ; 117(11): 113902, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661687

RESUMO

We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

16.
Phys Rev Lett ; 117(21): 219902, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911539

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.113902.

17.
J Synchrotron Radiat ; 22(6): 1492-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524314

RESUMO

Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.


Assuntos
Projeto do Implante Dentário-Pivô/métodos , Implantes Dentários , Imageamento Tridimensional/métodos , Teste de Materiais/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Óptica/métodos , Força Compressiva , Análise do Estresse Dentário , Estresse Mecânico
18.
Nat Mater ; 13(12): 1102-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326825

RESUMO

Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.


Assuntos
Exoesqueleto/química , Exoesqueleto/crescimento & desenvolvimento , Carbonato de Cálcio/química , Exoesqueleto/diagnóstico por imagem , Exoesqueleto/ultraestrutura , Animais , Bivalves , Calcificação Fisiológica , Grão Comestível/crescimento & desenvolvimento , Imageamento Tridimensional , Microscopia de Contraste de Fase , Minerais/química , Termodinâmica , Microtomografia por Raio-X
19.
J Exp Biol ; 217(Pt 17): 3095-107, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24948639

RESUMO

The kinematics of the biting and chewing mouthparts of insects is a complex interaction of various components forming multiple jointed chains. The non-invasive technique of in vivo cineradiography by means of synchrotron radiation was employed to elucidate the motion cycles of the mouthparts in the cockroach Periplaneta americana. Digital X-ray footage sequences were used in order to calculate pre-defined angles and distances, each representing characteristic aspects of the movement pattern. We were able to analyze the interactions of the mouthpart components and to generate a functional model of maxillary movement by integrating kinematic results, morphological dissections and fluorescence microscopy. During the opening and closing cycles, which take about 450-500 ms on average, we found strong correlations between the measured maxillary and mandibular angles, indicating a strong neural coordination of these movements. This is manifested by strong antiphasic courses of the maxillae and the mandibles, antiphasic patterns of the rotation of the cardo about its basic articulation at the head and by the deflection between the cardo and stipes. In our functional model of the maxilla, its movement pattern is explained by the antagonistic activity of four adductor-promotor muscles and two abductor-remotor muscles. However, beyond the observed intersegmental and bilateral stereotypy, certain amounts of variation across subsequent cycles within a sequence were observed with respect to the degree of correlation between the various mouthparts, the maximum, minimum and time course of the angular movements. Although generally correlated with the movement pattern of the mandibles and the maxillary cardo-stipes complex, such plastic behaviour was especially observed in the maxillary palpi and the labium.


Assuntos
Boca/anatomia & histologia , Periplaneta/anatomia & histologia , Animais , Fenômenos Biomecânicos , Cinerradiografia , Ingestão de Alimentos , Mastigação , Boca/fisiologia , Músculos/anatomia & histologia , Músculos/fisiologia , Periplaneta/fisiologia , Síncrotrons
20.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223169

RESUMO

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA