Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 211(1): 71-80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195219

RESUMO

B cell development requires the ordered rearrangement of Ig genes encoding H and L chain proteins that assemble into BCRs or Abs capable of recognizing specific Ags. Igκ rearrangement is promoted by chromatin accessibility and by relative abundance of RAG1/2 proteins. Expression of the E26 transformation-specific transcription factor Spi-C is activated in response to dsDNA double-stranded breaks in small pre-B cells to negatively regulate pre-BCR signaling and Igκ rearrangement. However, it is not clear if Spi-C regulates Igκ rearrangement through transcription or by controlling RAG expression. In this study, we investigated the mechanism of Spi-C negative regulation of Igκ L chain rearrangement. Using an inducible expression system in a pre-B cell line, we found that Spi-C negatively regulated Igκ rearrangement, Igκ transcript levels, and Rag1 transcript levels. We found that Igκ and Rag1 transcript levels were increased in small pre-B cells from Spic-/- mice. In contrast, Igκ and Rag1 transcript levels were activated by PU.1 and were decreased in small pre-B cells from PU.1-deficient mice. Using chromatin immunoprecipitation analysis, we identified an interaction site for PU.1 and Spi-C located in the Rag1 promoter region. These results suggest that Spi-C and PU.1 counterregulate Igκ transcription and Rag1 transcription to effect Igκ recombination in small pre-B cells.


Assuntos
Cadeias kappa de Imunoglobulina , Células Precursoras de Linfócitos B , Camundongos , Animais , Células Precursoras de Linfócitos B/metabolismo , Cadeias kappa de Imunoglobulina/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Recombinação Genética
2.
Immunohorizons ; 6(1): 104-115, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285436

RESUMO

Spi-C is an E26 transformation-specific transcription factor closely related to PU.1 and Spi-B. Spi-C has lineage-instructive functions important in B cell development, Ab-generating responses, and red pulp macrophage generation. This research examined the regulation of Spi-C expression in mouse B cells. To determine the mechanism of Spic regulation, we identified the Spic promoter and upstream regulatory elements. The Spic promoter had unidirectional activity that was reduced by mutation of an NF-κB binding site. Reverse transcription-quantitative PCR analysis revealed that Spic expression was reduced in B cells following treatment with cytokines BAFF + IL-4 + IL-5, anti-IgM Ab, or LPS. Cytochalasin treatment partially prevented downregulation of Spic. Unstimulated B cells upregulated Spic on culture. Spic was repressed by an upstream regulatory region interacting with the heme-binding regulator Bach2. Taken together, these data indicate that Spi-C is dynamically regulated by external signals in B cells and provide insight into the mechanism of regulation.

3.
WIREs Mech Dis ; 13(5): e1519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34730294

RESUMO

Cell fate decisions during hematopoiesis are the consequence of a complex mixture of inputs from cell-intrinsic and cell-extrinsic factors. In rare cases, expression of a single transcription factor, or a few key factors, may be sufficient to dictate lineage differentiation in a precursor cell. The E26-transformation-specific-family transcription factor Spi-C has emerged as an example of a lineage-instructive factor involved in the generation of mature, specialized subsets of both myeloid and lymphoid cells. Spi-C can instruct differentiation of splenic precursors into red pulp macrophages responsible for phagocytosing senescent red blood cells. In the B cell compartment, Spi-C acts as a key regulator of cell fate decisions at the pro-B to pre-B cell stage and for plasma cell differentiation. Spi-C regulates key genes including Nfkb1, Bach2, Syk, and Blnk to regulate cell cycle entry and B cell differentiation. Here, we review the biology of the lineage-instructive transcription factor Spi-C and its contribution to mechanisms of disease in macrophages and B cells. This article is categorized under: Cancer > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA